A study on the fourth q-Painlevé equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 348563
(http://iopscience.iop.org/0305-4470/34/41/312)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.98
The article was downloaded on 02/06/2010 at 09:20

Please note that terms and conditions apply.

A study on the fourth \boldsymbol{q}-Painlevé equation

Kenji Kajiwara ${ }^{1}$, Masatoshi Noumi ${ }^{2}$ and Yasuhiko Yamada ${ }^{2}$
${ }^{1}$ Department of Electrical Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
${ }^{2}$ Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan

Received 19 July 2001
Published 5 October 2001
Online at stacks.iop.org/JPhysA/34/8563

Abstract

A q-difference analogue of the fourth Painlevé equation is proposed. Its symmetry structure and some particular solutions are investigated.

PACS numbers: $02.30 . \mathrm{Hq}, 02.30 . \mathrm{Gp}, 02.30 . \mathrm{Ks}$

1. Introduction

The importance of six Painlevé equations and their solutions in mathematics and mathematical physics is widely accepted. The discrete analogue of Painlevé equations was first recognized in [6-8], where they appear as Schlesinger transformations of the Painlevé equations. After the discovery of the discrete analogue of the Painlevé property which is now called the singularity confinement property [4], many second-order difference equations, including q-difference equations, have been identified as the discrete Painlevé equations [5, 16]. By investigating the Lax pairs, particular solutions including τ functions and bilinear equations, and so on [3], it has been gradually recognized that discrete Painlevé equations admit similar properties to original Painlevé equations.

The purpose of this paper is to introduce a q-difference analogue of the fourth Painlevé equation P_{IV}. This equation, called the q-Painlevé IV equation $q \mathrm{P}_{\mathrm{IV}}$ below, shares many characteristic properties with the original P_{IV}. In particular, it admits the action of the affine Weyl group of type $A_{2}^{(1)}$ as a group of Bäcklund transformations. Furthermore, it has an analogue of classical solutions expressible by the continuous q-Hermite-Weber functions and rational solutions corresponding to those of $\mathrm{P}_{\text {IV }}$ studied in [10, 13, 15].

The plan of this paper is as follows. We introduce our $q \mathrm{P}_{\text {IV }}$ in section 2 and describe its symmetry structure in terms of the affine Weyl group $W\left(A_{2}^{(1)}\right)$. In section 3, we construct a q-analogue of classical solutions along each reflection hyperplane from a seed solution which is described by a discrete Riccati equation. Each particular solution of this class is expressed in terms of a Toeplitz type determinant of continuous q-Hermite-Weber functions. In section 4, we discuss some related topics including the relationship between our $q \mathrm{P}_{\mathrm{IV}}$ and Sakai's Mul. 6 system [17] and the ultra-discrete limit of $q \mathrm{P}_{\mathrm{IV}}$.

2. Symmetric form of a q-Painlevé equation $q \mathrm{P}_{\mathrm{IV}}$

2.1. q-Painlevé equation $q P_{I V}$

In this paper, we consider the following discrete system including three dependent variables f_{0}, f_{1} and f_{2} and three parameters a_{0}, a_{1} and a_{2} :

$$
\begin{align*}
& \overline{a_{0}}=a_{0} \quad \overline{a_{1}}=a_{1} \quad \overline{a_{2}}=a_{2} \\
& \overline{f_{0}}=a_{0} a_{1} f_{1} \frac{1+a_{2} f_{2}+a_{2} a_{0} f_{2} f_{0}}{1+a_{0} f_{0}+a_{0} a_{1} f_{0} f_{1}} \\
& \overline{f_{1}}=a_{1} a_{2} f_{2} \frac{1+a_{0} f_{0}+a_{0} a_{1} f_{0} f_{1}}{1+a_{1} f_{1}+a_{1} a_{2} f_{1} f_{2}} \tag{1}\\
& \overline{f_{2}}=a_{2} a_{0} f_{0} \frac{1+a_{1} f_{1}+a_{1} a_{2} f_{1} f_{2}}{1+a_{2} f_{2}+a_{2} a_{0} f_{2} f_{0}}
\end{align*}
$$

where ${ }^{-}$stands for the discrete time evolution. We shall also use the notation $t(x)=\bar{x}$ when we regard $x \rightarrow \bar{x}$ as a transformation of variables. The inverse transformation of t is given by

$$
\begin{align*}
& \underline{a_{0}}=a_{0} \quad \underline{a_{1}}=a_{1} \quad \underline{a_{2}}=a_{2} \\
& \underline{f_{0}}=\frac{f_{2}}{a_{0} a_{1}} \frac{a_{0} a_{1}+a_{0} f_{1}+f_{0} f_{1}}{a_{2} a_{0}+a_{2} f_{0}+f_{2} f_{0}} \\
& \underline{f_{1}}=\frac{f_{0}}{a_{1} a_{2}} \frac{a_{1} a_{2}+a_{1} f_{2}+f_{1} f_{2}}{a_{0} a_{1}+a_{0} f_{1}+f_{0} f_{1}} \tag{2}\\
& \underline{f_{2}}=\frac{f_{1}}{a_{2} a_{0}} \frac{a_{2} a_{0}+a_{2} f_{0}+f_{2} f_{0}}{a_{1} a_{2}+a_{1} f_{2}+f_{1} f_{2}}
\end{align*}
$$

We introduce a constant q by setting $a_{0} a_{1} a_{2}=q$. Noting that the product $f_{0} f_{1} f_{2}$ can be regarded as the independent variable, we introduce a variable c such that $f_{0} f_{1} f_{2}=q c^{2}$ and $\bar{c}=q c$. If we regard $f_{j}(j=0,1,2)$ as functions in c, equation (1) thus represents a system of q-difference equations for the unknown functions $f_{j}=f_{j}(c)(j=0,1,2)$ with parameters $a_{j}(j=0,1,2)$ such that $a_{0} a_{1} a_{2}=q$. As we shall see in section 1.3 below, this q-difference system has a continuous limit to the symmetric form of the fourth Painlevé equation P_{IV}. For this reason, we refer to equation (1) as the symmetric form of the fourth q-Painlevé equation $q \mathrm{P}_{\mathrm{IV}}$.

2.2. Bäcklund transformations

The discrete system equation (1) admits the action of the (extended) affine Weyl group $\tilde{W}=\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle$ of type $A_{2}^{(1)}$ as a group of Bäcklund transformations. In what follows we denote by \tilde{W} the group generated by the generators s_{0}, s_{1}, s_{2}, π and the fundamental relations
$s_{i}^{2}=1 \quad\left(s_{i} s_{i+1}\right)^{3}=1 \quad \pi^{3}=1 \quad \pi s_{i}=s_{i+1} \pi \quad(i=0,1,2)$
where the indices are understood as elements of $\mathbb{Z} / 3 \mathbb{Z}$.
We define the action of s_{0}, s_{1}, s_{2} and π on the parameters a_{0}, a_{1} and a_{2} by the following formulae:

$$
\begin{array}{rlll}
s_{0}\left(a_{0}\right) & =a_{0}^{-1} & s_{0}\left(a_{1}\right)=a_{1} a_{0} & s_{0}\left(a_{2}\right)=a_{2} a_{0} \\
s_{1}\left(a_{0}\right)=a_{0} a_{1} & s_{1}\left(a_{1}\right)=a_{1}^{-1} & s_{1}\left(a_{2}\right)=a_{2} a_{1} \\
s_{2}\left(a_{0}\right)=a_{0} a_{2} & s_{2}\left(a_{1}\right)=a_{1} a_{2} & s_{2}\left(a_{2}\right)=a_{2}^{-1} \\
\pi\left(a_{0}\right)=a_{1} & \pi\left(a_{1}\right)=a_{2} & \pi\left(a_{2}\right)=a_{0} .
\end{array}
$$

Note that this definition is a multiplicative version of the standard realization of \tilde{W} on the simple roots α_{j} defined through $a_{j}=q^{\alpha_{j}}(j=0,1,2)$. We now define the action of s_{0}, s_{1}, s_{2} and π on the f-variables as follows:

$$
\begin{align*}
& s_{0}\left(f_{0}\right)=f_{0} \quad s_{0}\left(f_{1}\right)=f_{1} \frac{a_{0}+f_{0}}{1+a_{0} f_{0}} \quad s_{0}\left(f_{2}\right)=f_{2} \frac{1+a_{0} f_{0}}{a_{0}+f_{0}} \\
& s_{1}\left(f_{0}\right)=f_{0} \frac{1+a_{1} f_{1}}{a_{1}+f_{1}} \quad s_{1}\left(f_{1}\right)=f_{1} \quad s_{1}\left(f_{2}\right)=f_{2} \frac{a_{1}+f_{1}}{1+a_{1} f_{1}} \tag{5}\\
& s_{2}\left(f_{0}\right)=f_{0} \frac{a_{2}+f_{2}}{1+a_{2} f_{2}} \quad s_{2}\left(f_{1}\right)=f_{1} \frac{1+a_{2} f_{2}}{a_{2}+f_{2}} \quad s_{2}\left(f_{2}\right)=f_{2} \\
& \pi\left(f_{0}\right)=f_{1} \quad \pi\left(f_{1}\right)=f_{2} \quad \pi\left(f_{2}\right)=f_{0} .
\end{align*}
$$

We remark that the action of s_{i} on the a-variables and the f-variables is given by

$$
\begin{equation*}
s_{i}\left(a_{j}\right)=a_{j} a_{i}^{-a_{i j}} \quad s_{i}\left(f_{j}\right)=f_{j}\left(\frac{a_{i}+f_{i}}{1+a_{i} f_{i}}\right)^{u_{i j}} \quad(i, j=0,1,2) \tag{6}
\end{equation*}
$$

respectively, where $A=\left(a_{i j}\right)_{i, j=0}^{2}$ is the generalized Cartan matrix of type $A_{2}^{(1)}$ and $U=\left(u_{i j}\right)_{i, j=0}^{2}$ is an orientation matrix of the corresponding Dynkin diagram:

$$
A=\left[\begin{array}{ccc}
2 & -1 & -1 \tag{7}\\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right] \quad U=\left[\begin{array}{ccc}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

The following theorem can be verified by direct computation.
Theorem 2.1. The transformations s_{0}, s_{1}, s_{2} and π of the a-variables and the f-variables, defined by (4) and (5), generate the extended affine Weyl group $\tilde{W}=\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle$ of type $A_{2}^{(1)}$. Furthermore, they commute with the time evolution t of the fourth q-Painlevé equation $q P_{I V}$.

By using the action of the extended affine Weyl group \tilde{W}, we can define the Schlesinger transformations T_{1}, T_{2} and T_{3} for $q \mathrm{P}_{\mathrm{IV}}$ as

$$
\begin{equation*}
T_{1}=\pi s_{2} s_{1} \quad T_{2}=s_{1} \pi s_{2} \quad T_{3}=s_{2} s_{1} \pi \tag{8}
\end{equation*}
$$

Note that $T_{i} T_{j}=T_{j} T_{i}(i, j=1,2,3)$ and $T_{1} T_{2} T_{3}=1$. The action of T_{1} on the variables a_{j} and f_{j} is given explicitly as follows:

$$
\begin{align*}
& T_{1}\left(a_{0}\right)=q a_{0} \quad T_{1}\left(a_{1}\right)=q^{-1} a_{1} \quad T_{1}\left(a_{2}\right)=a_{2} \\
& T_{1}\left(f_{0}\right)=f_{1} \frac{\left(a_{0}+f_{0}\right)\left(a_{0}+f_{0}+a_{0} a_{2} f_{2}+a_{0}^{2} a_{2} f_{0} f_{2}\right)}{\left(1+a_{0} f_{0}\right)\left(a_{0}^{2} a_{2}+a_{0} a_{2} f_{0}+f_{2}+a_{0} f_{0} f_{2}\right)} \\
& T_{1}\left(f_{1}\right)=f_{2} \frac{1+a_{0} f_{0}}{a_{0}+f_{0}} \tag{9}\\
& T_{1}\left(f_{2}\right)=f_{0} \frac{a_{0}^{2} a_{2}+a_{0} a_{2} f_{0}+f_{2}+a_{0} f_{0} f_{2}}{a_{0}+f_{0}+a_{0} a_{2} f_{2}+a_{0}^{2} a_{2} f_{0} f_{2}} .
\end{align*}
$$

The corresponding formulae for T_{2} and T_{3} are obtained by the rotation of indices, since $T_{2}=\pi T_{1} \pi^{-1}$ and $T_{3}=\pi T_{2} \pi^{-1}$. Each of these Schlesinger transformations commutes with the time evolution of $q \mathrm{P}_{\mathrm{IV}}$ and can be regarded as a version of the third q-Painlevé equation. For example, equation (9) is rewritten equivalently as

$$
\begin{align*}
& T_{1}\left(f_{1}\right)=f_{2} \frac{1+a_{0} f_{0}}{a_{0}+f_{0}}=\frac{q c^{2}}{f_{0} f_{1}} \frac{1+a_{0} f_{0}}{a_{0}+f_{0}} \\
& T_{1}^{-1}\left(f_{0}\right)=f_{2} \frac{a_{1}+f_{1}}{1+a_{1} f_{1}}=\frac{q c^{2}}{f_{0} f_{1}} \frac{a_{1}+f_{1}}{1+a_{1} f_{1}} \tag{10}
\end{align*}
$$

This is an analogue of the fact that some discrete Painlevé equations arise from Bäcklund transformations of the Painlevé equations [3, 6-8, 12].

2.3. Limit transition to $P_{I V}$

By introducing a small parameter ε such that $q=\mathrm{e}^{-\varepsilon^{2} / 2}$, we set

$$
\begin{equation*}
a_{i}=\mathrm{e}^{-\varepsilon^{2} \alpha_{i} / 2} \quad f_{i}=-\mathrm{e}^{-\varepsilon \varphi_{i}} \quad(j=0,1,2) \tag{11}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\overline{f_{i}}-f_{i}=\varepsilon^{2}\left(\varphi_{i}\left(\varphi_{i+1}-\varphi_{i+2}\right)+\alpha_{i}\right)+\mathrm{O}\left(\varepsilon^{3}\right) \tag{12}
\end{equation*}
$$

for $i=0,1,2$. Passing to the variables α_{j} and φ_{j}, we define the derivation ' by

$$
\begin{equation*}
x^{\prime}=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(\bar{x}-x) \tag{13}
\end{equation*}
$$

for a function x in α_{j} and φ_{j}. Then we have $\overline{f_{i}}-f_{i}=\varepsilon^{2} \varphi_{i}^{\prime}+\mathrm{O}\left(\varepsilon^{3}\right)$. Hence we obtain

$$
\begin{array}{ll}
\alpha_{0}^{\prime}=0 \quad \alpha_{1}^{\prime}=0 & \alpha_{2}^{\prime}=0 \\
\varphi_{0}^{\prime}=\varphi_{0}\left(\varphi_{1}-\varphi_{2}\right)+\alpha_{0} \\
\varphi_{1}^{\prime}=\varphi_{1}\left(\varphi_{2}-\varphi_{0}\right)+\alpha_{1} \tag{14}\\
\varphi_{2}^{\prime}=\varphi_{2}\left(\varphi_{3}-\varphi_{1}\right)+\alpha_{2} .
\end{array}
$$

This differential system is the symmetric form the fourth Painlevé equation $\mathrm{P}_{\text {IV }}[1,14,19]$. In fact, under the normalization $\varphi_{0}+\varphi_{1}+\varphi_{2}=t, \alpha_{0}+\alpha_{1}+\alpha_{2}=1$, the system (14) is equivalent to the second-order differential equation

$$
\begin{equation*}
y^{\prime \prime}=\frac{1}{2 y}\left(y^{\prime}\right)^{2}+\frac{3}{2} y^{3}-2 t y^{2}+\left(\frac{t^{2}}{2}+\alpha_{1}-\alpha_{2}\right) y-\frac{\alpha_{0}^{2}}{2 y} \tag{15}
\end{equation*}
$$

for $y=\varphi_{0}$, where ${ }^{\prime}=\mathrm{d} / \mathrm{d} t$. Through the limiting procedure, the Bäcklund transformations s_{0}, s_{1}, s_{2} and π for our $q \mathrm{P}_{\mathrm{IV}}$ also pass to those for the symmetric form of P_{IV} (14) such that

$$
\begin{align*}
& s_{i}\left(\alpha_{j}\right)=\alpha_{j}-\alpha_{i} a_{i j} \quad s_{i}\left(\varphi_{j}\right)=\varphi_{j}+\frac{\alpha_{i}}{\varphi_{i}} u_{i j} \quad(i, j=0,1,2) \tag{16}\\
& \pi\left(\alpha_{j}\right)=\alpha_{j+1} \quad \pi\left(\varphi_{j}\right)=\varphi_{j+1}
\end{align*}
$$

as in [13, 14].

3. Particular solutions for $q \mathbf{P}_{\text {IV }}$

In this section, we investigate the q-analogue of classical solutions of P_{IV} and determinant formulae for them. Recall that $\mathrm{P}_{\text {IV }}$ has two classes of classical solutions [10, 14, 15], those of hypergeometric type, expressed in terms of Hermite-Weber functions, and the rational solutions.

3.1. Continuous q-Hermite-Weber functions as seed solutions

In order to show the parameter dependence explicitly, we rewrite $q \mathrm{P}_{\text {IV }}$ (1) by operating $T_{1}^{\nu} T_{2}^{N}$ on (1) $(\nu, N \in \mathbb{Z})$. We denote $T_{1}^{\nu} T_{2}^{N}\left(f_{i}\right)=f_{i}(c ; v, N)$, and we abbreviate the unnecessary arguments depending on the context. Notice that

$$
\begin{array}{ll}
T_{1}^{v} T_{2}^{N}\left(a_{0}\right)=a_{0} q^{v} & T_{1}^{v} T_{2}^{N}\left(a_{1}\right)=a_{1} q^{-v+N} \\
T_{1}^{v} T_{2}^{N}\left(a_{2}\right)=a_{2} q^{-N} & T_{1}^{v} T_{2}^{N}(c)=c \tag{17}
\end{array}
$$

and

$$
\begin{equation*}
t\left(a_{i}\right)=a_{i} \quad(i=0,1,2) \quad t(c)=q c \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
q=a_{0} a_{1} a_{2} \quad c=\left(\frac{f_{0} f_{1} f_{2}}{q}\right)^{1 / 2} \tag{19}
\end{equation*}
$$

The q-Painlevé IV equation $q \mathrm{P}_{\text {IV }}$ with respect to the variable c is expressed as

$$
\begin{align*}
& f_{0}(q c)=a_{0} a_{1} q^{N} f_{1}(c) \frac{1+a_{2} q^{-N} f_{2}(c)+a_{2} a_{0} q^{\nu-N} f_{2}(c) f_{0}(c)}{1+a_{0} q^{v} f_{0}(c)+a_{0} a_{1} q^{N} f_{0}(c) f_{1}(c)} \tag{20}\\
& f_{1}(q c)=a_{1} a_{2} q^{-v} f_{2}(c) \frac{1+a_{0} q^{\nu} f_{0}(c)+a_{0} a_{1} q^{N} f_{0}(c) f_{1}(c)}{1+a_{1} q^{-\nu+N} f_{1}(c)+a_{1} a_{2} q^{-v} f_{1}(c) f_{2}(c)} \tag{21}\\
& f_{2}(q c)=a_{2} a_{0} q^{\nu-N} f_{0}(c) \frac{1+a_{1} q^{-\nu+N} f_{1}(c)+a_{1} a_{2} q^{-v} f_{1}(c) f_{2}(c)}{1+a_{2} q^{-N} f_{2}(c)+a_{2} a_{0} q^{\nu-N} f_{2}(c) f_{0}(c)} \tag{22}
\end{align*}
$$

where the arguments v and N for f_{i} are suppressed so that $f_{i}(c)=f_{i}(c ; v, N)$. In what follows, we use similar abbreviations

$$
\begin{array}{ll}
f_{i}\left(q^{k} c\right)=f_{i}\left(q^{k} c ; v, N\right) & f_{i}(v+k)=f_{i}(c ; v+k, N) \\
f_{i}(N+k)=f_{i}(c ; v, N+k) & \tag{23}
\end{array}
$$

for $k \in \mathbb{Z}$.
First let us consider the case $N=0$. It is possible to specialize the variables as

$$
\begin{equation*}
f_{2}=-1 \quad a_{2}=1 \tag{24}
\end{equation*}
$$

consistently. In fact, equation (22) becomes trivial by this specialization, and equations (20) and (21) are reduced to a discrete Riccati type equation

$$
\begin{equation*}
f_{1}(q c)=-\frac{q}{a_{0} q^{v}} \frac{\left(1-q^{2} c^{2}\right) f_{1}(c)-a_{0} q^{v} c^{2}}{f_{1}(c)} \tag{25}
\end{equation*}
$$

and $f_{0}(c)=-\frac{q c^{2}}{f_{1}(c)}$. By putting $f_{1}(c)=\frac{F_{v}(c)}{G_{v}(c)}$ in equation (25), we can solve equation (25) as

$$
\begin{equation*}
f_{1}(c)=-\frac{q}{a_{0} q^{v}} \frac{G_{v}(q c)}{G_{v}(c)} \tag{26}
\end{equation*}
$$

with $G_{\nu}(c)$ satisfying the linear q-difference equation

$$
\begin{equation*}
G_{\nu}\left(q^{2} c\right)=\left(1-q^{2} c^{2}\right) G_{\nu}(q c)+a_{0}^{2} q^{2 v} c^{2} G_{\nu}(c) \tag{27}
\end{equation*}
$$

Let us derive contiguity relations to be satisfied by $G_{\nu}(c)$ in the direction of v. For this purpose, we consider the Schlesinger transformation T_{1} (9),
$f_{0}(\nu+1)=f_{1}(\nu) \frac{a_{0} q^{\nu}+f_{0}(\nu)}{1+a_{0} q^{\nu} f_{0}(\nu)} \frac{a_{0} q^{\nu}+f_{0}(\nu)+a_{0} a_{2} q^{\nu-N} f_{2}(\nu)+a_{0}^{2} a_{2} q^{2 \nu-N} f_{0}(\nu) f_{2}(\nu)}{a_{2}^{2} a_{2} q^{2 \nu-N}+a_{0} a_{2} q^{\nu-N} f_{0}(\nu)+f_{2}(\nu)+a_{0} q^{\nu} f_{0}(\nu) f_{2}(\nu)}$
$f_{1}(v+1)=f_{2}(v) \frac{1+a_{0} q^{v} f_{0}(v)}{a_{0} q^{v}+f_{0}(v)}$
$f_{2}(\nu+1)=f_{0}(\nu) \frac{a_{0}^{2} a_{2} q^{2 \nu-N}+a_{0} a_{2} q^{\nu-N} f_{0}(\nu)+f_{2}(\nu)+a_{0} q^{\nu} f_{0}(\nu) f_{2}(\nu)}{a_{0} q^{\nu}+f_{0}(\nu)+a_{0} a_{2} q^{\nu-N} f_{2}(\nu)+a_{0}^{2} a_{2} q^{2 v-N} f_{0}(\nu) f_{2}(\nu)}$.
Applying the specialization (24) and putting $N=0$, equations (28)-(30) are reduced to a discrete Riccati type equation,

$$
\begin{equation*}
f_{1}(v+1)=-\frac{f_{1}(v)-a_{0} q^{v+1} c^{2}}{a_{0} q^{v} f_{1}(v)-q c^{2}} \tag{31}
\end{equation*}
$$

Substituting equation (26) into (31), we obtain contiguity relations for $G_{\nu}(c)$,

$$
\begin{align*}
& G_{v+1}(q c)=G_{\nu}(q c)+a_{0}^{2} q^{2 v} c^{2} G_{\nu}(c) \tag{32}\\
& G_{v+1}(c)=G_{v}(q c)+c^{2} G_{v}(c) \tag{33}
\end{align*}
$$

In particular, we obtain a three-term relation in the direction of v,

$$
\begin{equation*}
G_{v+2}(c)=\left(c^{2}+1\right) G_{v+1}(c)-c^{2}\left(1-a_{0}^{2} q^{2 v}\right) G_{v}(c) \tag{34}
\end{equation*}
$$

We note that equations (27) and (34) are derived from equations (32) and (33).
From the above discussion, we have:
Proposition 3.1. $q P_{I V}(20)-(22)$ admits a one-parameter family of particular solutions given by

$$
\begin{equation*}
f_{0}=c^{2} a_{0} q^{\nu} \frac{G_{\nu}(c)}{G_{\nu}(q c)} \quad f_{1}=-\frac{q}{a_{0} q^{\nu}} \frac{G_{\nu}(q c)}{G_{\nu}(c)} \quad f_{2}=-1 \tag{35}
\end{equation*}
$$

for $N=0$, where $G_{\nu}(c)$ is a function satisfying the contiguity relations (32) and (33).
It is interesting to note that equation (27) admits polynomial solutions in c if $a_{0}=q$,

$$
\begin{aligned}
& G_{0}(c)=1 \\
& G_{1}(c)=c^{2}+1 \\
& G_{2}(c)=c^{4}+\left(1+q^{2}\right) c^{2}+1 \\
& G_{3}(c)=c^{6}+\left(1+q^{2}+q^{4}\right) c^{4}+\left(1+q^{2}+q^{4}\right) c^{2}+1
\end{aligned}
$$

It is not difficult to check that
$G_{\nu}(c)=\sum_{k=0}^{\nu} \frac{\left(q^{2} ; q^{2}\right)_{\nu}}{\left(q^{2} ; q^{2}\right)_{k}\left(q^{2} ; q^{2}\right)_{\nu-k}} c^{2 \nu-2 k}=\sum_{k=0}^{\nu}\left[\begin{array}{l}\nu \\ k\end{array}\right]_{q^{2}} c^{2 \nu-2 k} \quad(\nu=0,1,2, \ldots)$
satisfy equations (32) and (33), where $\left[\begin{array}{l}\nu \\ k\end{array}\right]_{q}$ is the q-binomial coefficient. The generating function for these polynomials is given by

$$
\begin{equation*}
\frac{1}{\left(c \lambda ; q^{2}\right)\left(\lambda / c ; q^{2}\right)}=\sum_{v=0}^{\infty} \frac{G_{v}(c)}{\left(q^{2} ; q^{2}\right)_{v}}\left(\frac{\lambda}{c}\right)^{v} . \tag{37}
\end{equation*}
$$

The polynomials $H_{\nu}(x)=c^{-\nu} G_{v}(c), x=\frac{c+c^{-1}}{2}$, are called the continuous q-Hermite polynomials [2,11]. In this sense, $c^{-\nu} G_{v}(c)$ for $a_{0} \neq q^{l}(l \in \mathbb{Z})$ may be regarded as a q-difference analogue of the Hermite-Weber functions, to which hereafter we shall refer as 'continuous q-Hermite-Weber functions'.

We note that it is possible to obtain 'higher-order' solutions for $N \in \mathbb{Z}$ by successive applications of T_{2} on the solutions obtained above ${ }^{3}$. These solutions are expressed rationally in the continuous q-Hermite-Weber functions.

From the rotational symmetry π of $q \mathrm{P}_{\mathrm{IV}}$, it is possible to apply other specializations, $\left(a_{0}, f_{0}\right)=(1,-1), v=0$, or $\left(a_{1}, f_{1}\right)=(1,-1), v-N=0$, on $q \mathrm{P}_{\mathrm{IV}}(20)-(22)$ and perform the same procedure as discussed above. Therefore, we obtain:
Theorem 3.2. When $a_{i}=q^{k}$ for some $i=0,1,2$ and $k \in \mathbb{Z}$, the fourth q-Painlevé equation $q P_{I V}$ (1) admits a one-parameter family of particular solutions which are expressed rationally by the continuous q-Hermite-Weber functions.
Explicit description of these solutions will be given in the next section.
Note that the hypersurfaces $a_{i}=q^{k}(i=0,1,2 ; k \in \mathbb{Z})$ in the parameter space correspond to the reflection hyperplanes of the affine Weyl group $W=W\left(A_{2}^{(1)}\right)$. This is an analogue of a well known result by Okamoto for the classical solutions of the continuous $\mathrm{P}_{\text {IV }}$ [15].

[^0]
3.2. Toeplitz determinants

3.2.1. Determinant formula and bilinear equations. In this section, we prove the following determinant formula for the particular solutions obtained in the previous section.
Theorem 3.3. Let $G_{\nu}(c)$ be a solution of equations (32) and (33). For each $N \in \mathbb{Z} \geqslant 0$, we define an $N \times N$ Toeplitz determinant

$$
\begin{equation*}
\phi_{N}^{\nu}(c)=\operatorname{det}\left(G_{v-i+j}(c)\right)_{i, j=1, \ldots, N} \quad\left(N \in \mathbb{Z}_{>0}\right) \quad \phi_{0}^{v}(c)=1 \tag{38}
\end{equation*}
$$

Then,

$$
\begin{align*}
& f_{0}(c ; v, N)=a_{0} q^{v} c^{2} \frac{\phi_{N+1}^{v}(c) \phi_{N}^{v}(q c)}{\phi_{N+1}^{v}(q c) \phi_{N}^{v}(c)} \tag{39}\\
& f_{1}(c ; v, N)=-\frac{1}{a_{0} q^{v+N-1}} \frac{\phi_{N+1}^{v}(q c) \phi_{N}^{\nu-1}(c)}{\phi_{N+1}^{v}(c) \phi_{N}^{v-1}(q c)} \tag{40}\\
& f_{2}(c ; v, N)=-q^{N} \frac{\phi_{N}^{v-1}(q c) \phi_{N}^{v}(c)}{\phi_{N}^{v}(q c) \phi_{N}^{v-1}(c)} \tag{41}
\end{align*}
$$

satisfy $q P_{I V}(20)-(22)$ with $a_{2}=1$.
We note that the case of $N=0$ agrees with proposition 3.1.
Theorem 3.3 is a direct consequence of the following proposition:
Proposition 3.4. $\phi_{N}^{\nu}(c)$ satisfies the following bilinear difference equations:
$a_{0}^{2} c^{2} q^{2 v} \phi_{N}^{\nu}(q c) \phi_{N+1}^{\nu}(c)+\phi_{N}^{\nu}(c) \phi_{N+1}^{\nu}(q c)=q^{-2 N} \phi_{N+1}^{\nu+1}(q c) \phi_{N}^{\nu-1}(c)$
$a_{0}^{2} q^{2 v} \phi_{N}^{\nu}(q c) \phi_{N+1}^{\nu+1}(c)-\phi_{N}^{\nu}(c) \phi_{N+1}^{\nu+1}(q c)=\left(a_{0}^{2} q^{2 v}-q^{2 N}\right) \phi_{N+1}^{\nu}(q c) \phi_{N}^{\nu+1}(c)$
$\phi_{N+1}^{\nu+1}(q c) \phi_{N}^{\nu}(c)-q^{2 N} \phi_{N+1}^{\nu+1}(c) \phi_{N}^{\nu}(q c)=c^{2}\left(a_{0}^{2} q^{2 v}-q^{2 N}\right) \phi_{N+1}^{\nu}(c) \phi_{N}^{\nu+1}(q c)$
$\phi_{N}^{\nu+1}(q c) \phi_{N}^{\nu}(c)-\phi_{N}^{\nu+1}(c) \phi_{N}^{\nu}(q c)=-\phi_{N-1}^{\nu}(q c) \phi_{N+1}^{\nu+1}(c)$
$\phi_{N}^{\nu+1}(q c) \phi_{N}^{\nu}(c)-q^{2 N} \phi_{N}^{\nu+1}(c) \phi_{N}^{v}(q c)=\frac{1}{a_{0}^{2} q^{2 v} c^{2}} \phi_{N+1}^{\nu+1}(q c) \phi_{N-1}^{\nu}(c)$
$q^{2 N} \phi_{N}^{\nu}(c) \phi_{N+1}^{\nu}(c)-\phi_{N+1}^{\nu+1}(c) \phi_{N}^{\nu-1}(c)=-a_{0}^{2} c^{2} q^{2(v-1)} \phi_{N+1}^{\nu}\left(q^{-1} c\right) \phi_{N}^{\nu}(q c)$
$\phi_{N}^{\nu}(c) \phi_{N+1}^{\nu+1}(c)+c^{2}\left(a_{0}^{2} q^{2 \nu}-q^{2 N}\right) \phi_{N+1}^{\nu}(c) \phi_{N}^{\nu+1}(c)=q^{-2 N} \phi_{N}^{\nu}\left(q^{-1} c\right) \phi_{N+1}^{\nu+1}(q c)$
$a_{0}^{2} q^{2 v} \phi_{N}^{\nu}(c) \phi_{N}^{\nu+1}(c)+\phi_{N+1}^{\nu+1} \phi_{N-1}^{\nu}(c)=a_{0}^{2} q^{2 v} \phi_{N}^{\nu+1}\left(q^{-1} c\right) \phi_{N}^{\nu}(q c)$.
Proof of theorem 3.3. We show that $f_{i}(c)(i=0,1,2)$ defined by equations (39)-(41) satisfy equation (20). Substituting equations (39)-(41) into the numerator of the right-hand side of equation (20), we have

$$
\begin{aligned}
1+q^{-N} f_{2}(c) & +a_{0} q^{\nu-N} f_{2}(c) f_{0}(c)=1+q^{-N} f_{2}(c)\left(1+a_{0}^{2} q^{2 v} c^{2} \frac{\phi_{N+1}^{v}(c) \phi_{N}^{v}(q c)}{\phi_{N+1}^{v}(q c) \phi_{N}^{v}(c)}\right) \\
= & 1+q^{-N} f_{2}(c) \frac{\phi_{N+1}^{v}(q c) \phi_{N}^{v}(c)+a_{0}^{2} q^{2 v} c^{2} \phi_{N+1}^{v}(c) \phi_{N}^{v}(q c)}{\phi_{N+1}^{v}(q c) \phi_{N}^{v}(c)} \\
= & 1+q^{-N} f_{2}(c) q^{-2 N} \frac{\phi_{N+1}^{v+1}(q c) \phi_{N}^{\nu-1}(c)}{\phi_{N+1}^{v}(q c) \phi_{N}^{v}(c)}=1-q^{-2 N} \frac{\phi_{N}^{\nu-1}(q c) \phi_{N+1}^{v+1}(q c)}{\phi_{N}^{v}(q c) \phi_{N+1}^{v}(q c)} \\
= & \frac{\phi_{N}^{\nu}(q c) \phi_{N+1}^{v}(q c)-q^{-2 N} \phi_{N}^{\nu-1}(q c) \phi_{N+1}^{\nu+1}(q c)}{\phi_{N}^{v}(q c) \phi_{N+1}^{v}(q c)} \\
= & -a_{0}^{2} c^{2} q^{2(\nu-N)} \frac{\phi_{N+1}^{v}(c) \phi_{N}^{v}\left(q^{2} c\right)}{\phi_{N}^{v}(q c) \phi_{N+1}^{v}(q c)}
\end{aligned}
$$

where we used bilinear equations (42) and (47). The denominator is calculated by using equations (43) and (48) as

$$
\begin{equation*}
1+a_{0} q^{\nu} f_{0}(c)+q^{N+1} f_{0}(c) f_{1}(c)=\frac{q^{-2 N} \phi_{N}^{\nu-1}(c) \phi_{N+1}^{\nu}\left(q^{2} c\right)}{\phi_{N+1}^{\nu}(q c) \phi_{N}^{\nu-1}(q c)} \tag{50}
\end{equation*}
$$

Then, the right-hand side of equation (20) reduces to

$$
\begin{aligned}
& q^{N+1} f_{1}(c) \frac{1+q^{-N} f_{2}(c)+a_{0} q^{v-N} f_{2}(c) f_{0}(c)}{1+a_{0} q^{v} f_{0}(c)+q^{N+1} f_{0}(c) f_{1}(c)} \\
&= q^{N+1} \frac{1}{a_{0} q^{\nu+N-1}} \frac{\phi_{N+1}^{v}(q c) \phi_{N}^{v-1}(c)}{\phi_{N+1}^{v}(c) \phi_{N}^{v-1}(q c)} \\
& \quad \times a_{0}^{2} c^{2} q^{2(\nu-N)} \frac{\phi_{N+1}^{v}(c) \phi_{N}^{v}\left(q^{2} c\right)}{\phi_{N}^{v}(q c) \phi_{N+1}^{v}(q c)} q^{2 N} \frac{\phi_{N+1}^{v}(q c) \phi_{N}^{\nu-1}(q c)}{\phi_{N}^{v-1}(c) \phi_{N+1}^{v}\left(q^{2} c\right)} \\
&= a_{0} c^{2} q^{v+2} \frac{\phi_{N+1}^{v}(q c) \phi_{N}^{v}\left(q^{2} c\right)}{\phi_{N+1}^{v}\left(q^{2} c\right) \phi_{N}^{v}(q c)}=f_{0}(q c)
\end{aligned}
$$

Thus we have shown that equation (20) follows. Equation (21) is checked by using the bilinear equations (43), (47), (45) and (49). Equation (22) follows automatically.
Remark. It should be noted that both $1+a_{i} f_{i}$ and $1+f_{i} / a_{i}(i=0,1,2)$ admit a multiplicative formula with respect to ϕ. In fact, we have

$$
\begin{align*}
& 1+a_{0} q^{v} f_{0}(c ; v, N)=q^{-2 N} \frac{\phi_{N+1}^{v+1}(q c) \phi_{N}^{v-1}(c)}{\phi_{N+1}^{v}(q c) \phi_{N}^{v}(c)} \tag{51}\\
& 1+a_{1} q^{-v+N} f_{1}(c ; v, N)=\frac{a_{0}^{2} q^{2(v-1)}-q^{2 N}}{a_{0}^{2} q^{2(v-1)}} \frac{\phi_{N+1}^{\nu-1}(q c) \phi_{N}^{v}(c)}{\phi_{N+1}^{v}(c) \phi_{N}^{v-1}(q c)} \tag{52}\\
& 1+a_{2} q^{-N} f_{2}(c ; v, N)=-\frac{\phi_{N-1}^{v-1}(q c) \phi_{N+1}^{v}(c)}{\phi_{N}^{v-1}(c) \phi_{N}^{v}(q c)} \tag{53}
\end{align*}
$$

and

$$
\begin{align*}
& 1+\frac{f_{0}(c ; v, N)}{a_{0} q^{\nu}}=\frac{\phi_{N}^{\nu-1}(q c) \phi_{N+1}^{\nu+1}(c)}{\phi_{N+1}^{v}(q c) \phi_{N}^{\nu}(c)} \tag{54}\\
& 1+\frac{f_{1}(c ; v, N)}{a_{1} q^{-v+N}}=q^{-2 N} c^{2}\left(q^{2 N}-a_{0}^{2} q^{2(\nu-1)}\right) \frac{\phi_{N+1}^{\nu-1}(c) \phi_{N}^{\nu}(q c)}{\phi_{N+1}^{v}(c) \phi_{N}^{\nu-1}(q c)} \tag{55}\\
& 1+\frac{f_{2}(c ; v, N)}{a_{2} q^{-N}}=\frac{1}{a_{0}^{2} c^{2} q^{2(v-1)}} \frac{\phi_{N+1}^{v}(q c) \phi_{N-1}^{\nu-1}(c)}{\phi_{N}^{v}(q c) \phi_{N}^{\nu-1}(c)} \tag{56}
\end{align*}
$$

which can be verified directly by using equations (39)-(41) and the bilinear equations (42)(46).
3.2.2. Proof of proposition 3.4. Our basic idea for proving proposition 3.4 is as follows. Bilinear difference equations are derived from the Plücker relations, which are quadratic identities among determinants whose columns are shifted. Therefore, we first construct such 'difference formulae' that relate 'shifted determinants' and $\phi_{N}^{\nu}(c)$, by using the contiguity relations of $G_{v}(c)$. We then derive bilinear difference equations with the aid of difference formulae from proper Plücker relations. We take equation (42) as an example to show this procedure explicitly. (For other equations, see the appendix.)

Let us introduce notations,

$$
\begin{align*}
& G_{v}\left(q^{m} c\right)=G_{v}^{m} \tag{57}\\
& \phi_{N}^{\nu, m}=\left|\begin{array}{cccc}
G_{v}^{m} & G_{\nu+1}^{m}\left(q^{m} c\right)=\phi_{N}^{v, m} \\
G_{v-1}^{m} & G_{v}^{m} & \cdots & G_{v+N-1}^{m} \\
\vdots & \vdots & \ddots & \vdots \\
G_{v-N-1}^{m} & G_{v-N+2}^{m} & \cdots & G_{v}^{m}
\end{array}\right|=\left|\mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, N-\mathbf{1}^{m}\right| \tag{58}
\end{align*}
$$

where \boldsymbol{k}^{m} denotes a column vector,

$$
\boldsymbol{k}^{m}=\left(\begin{array}{c}
G_{v+k}^{m} \tag{59}\\
G_{v+k-1}^{m} \\
\vdots \\
G_{v+k-N+1}^{m}
\end{array}\right)
$$

Here the height of the column is N, but we use the same symbol for determinants with different size, since there is no possibility of confusion.

We next construct a difference formula.

Lemma 3.5 (Difference formula I).

$\left|\mathbf{0}^{m+1 /}, \mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{3}^{m}, \boldsymbol{N}-\mathbf{2}^{m}\right|=\left(a_{0} c q^{m+v-1}\right)^{-2(N-1)} \phi_{N}^{v, m+1}$
$\left|\mathbf{1}^{m+1 \prime}, \mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{3}^{m}, \boldsymbol{N}-\mathbf{2}^{m}\right|=\left(a_{0} c q^{m+\nu-1}\right)^{-2(N-1)} \phi_{N}^{\nu, m+1}$
where $\boldsymbol{k}^{m \prime}$ is a column vector,

$$
\boldsymbol{k}^{m \prime}=\left(\begin{array}{c}
G_{v+k}^{m} \\
q^{2} G_{v+k-1}^{m} \\
\vdots \\
q^{2(N-1)} G_{v+k-N+1}^{m}
\end{array}\right) .
$$

Proof of lemma 3.5. We use the contiguity relation (32), which is rewritten as

$$
\begin{equation*}
G_{v+1}^{m+1}=G_{v}^{m+1}+a_{0}^{2} q^{2(v+m)} c^{2} G_{v}^{m} . \tag{63}
\end{equation*}
$$

in the present notation. Then we have

$$
\begin{aligned}
& \phi_{N}^{\nu, m+1}=\left|\begin{array}{cccc}
G_{v}^{m+1} & G_{v+1}^{m+1} & \cdots & G_{v+N-1}^{m+1} \\
G_{v-1}^{m+1} & G_{v}^{m+1} & \cdots & G_{v-N-2}^{m+1} \\
\vdots & \vdots & \ddots & \vdots \\
G_{v-N+1}^{m+1} & G_{v-N+2}^{m+1} & \cdots & G_{v}^{m+1}
\end{array}\right| \\
& =\left|\begin{array}{cccc}
G_{v}^{m+1} & G_{\nu+1}^{m+1}-G_{v}^{m+1} & \cdots & G_{\nu+N-1}^{m+1}-G_{\nu+N-2}^{m+1} \\
G_{v-1}^{m+1} & G_{v}^{m+1}-G_{v-1}^{m+1} & \cdots & G_{\nu+N-2}^{m+1}-G_{\nu+N-3}^{m+1} \\
\vdots & \vdots & \ddots & \vdots \\
G_{v-N+1}^{m+1} & G_{\nu-N+2}^{m+1}-G_{\nu-N+1}^{m+1} & \cdots & G_{v}^{m+1}-G_{\nu-1}^{m+1}
\end{array}\right| \\
& =\left|\begin{array}{cccc}
G_{v}^{m+1} & a_{0}^{2} c^{2} q^{2(\nu+m)} G_{v}^{m} & \cdots & a_{0}^{2} q^{2(\nu+N-2+m)} c^{2} G_{\nu+N-2}^{m} \\
G_{v-1}^{m+1} & a_{0}^{2} c^{2} q^{2(\nu-1+m)} G_{v-1}^{m} & \cdots & a_{0}^{2} q^{2(\nu+N-3+m)} c^{2} G_{v+N-3}^{m} \\
\vdots & \vdots & \ddots & \vdots \\
G_{v-N+1}^{m+1} & a_{0}^{2} c^{2} q^{2(\nu-N+1+m)} G_{v-N+1}^{m+1} & \cdots & a_{0}^{2} q^{2(\nu-1+m)} c^{2} G_{v-1}^{m}
\end{array}\right| \\
& =\left(a_{0} c q^{v+m-1}\right)^{2(N-1)}\left|\begin{array}{cccc}
G_{v}^{m+1} & G_{v}^{m} & \cdots & G_{v+N-2}^{m} \\
q^{2} G_{v-1}^{m+1} & G_{v-1}^{m} & \cdots & G_{v+N-3}^{m} \\
\vdots & \vdots & \ddots & \vdots \\
q^{2(N-1)} G_{v-N+1}^{m} & G_{v-N+1}^{m} & \cdots & G_{v-1}^{m}
\end{array}\right| \\
& =\left(a_{0} c q^{\nu+m-1}\right)^{2(N-1)}\left|\mathbf{0}^{m+1}, \mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, N-\mathbf{3}^{m}, N-\mathbf{2}^{m}\right|
\end{aligned}
$$

which is equation (60). In the second line of the above calculation, adding the second column to the first column, we obtain

$$
\phi_{N}^{v, m+1}=\left|\begin{array}{cccc}
G_{v+1}^{m+1} & G_{v}^{m+1}-G_{v}^{m+1} & \cdots & G_{v+N-1}^{m+1}-G_{v+N-2}^{m+1} \tag{64}\\
G_{v}^{m+1} & G_{v}^{m+1}-G_{v-1}^{m+1} & \cdots & G_{v-N-2}^{m+1}-G_{v+N-3}^{m+1} \\
\vdots & \vdots & \ddots & \vdots \\
G_{v-N+2}^{m+1} & G_{v-N+2}^{m+1}-G_{v-N+1}^{m+1} & \cdots & G_{v}^{m+1}-G_{v-1}^{m+1}
\end{array}\right|
$$

from which we obtain equation (61) by using equation (63).
We then consider the Plücker relation,

$$
\begin{align*}
0=\mid \varphi_{1}, \mathbf{1}^{m+1}, & \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\left|\times\left|\mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}, \boldsymbol{N}^{m}\right|\right. \\
& -\left|\varphi_{1}, \mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\right| \times\left|\mathbf{1}^{m+1^{\prime}}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}, \boldsymbol{N}^{m}\right| \\
& +\left|\mathbf{1}^{m+1^{\prime}}, \mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\right| \times\left|\varphi_{1}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}, \boldsymbol{N}^{m}\right| \tag{65}
\end{align*}
$$

where

$$
\varphi_{1}=\left(\begin{array}{c}
1 \tag{66}\\
0 \\
\vdots \\
0
\end{array}\right)
$$

By expansion with respect to the column φ_{1}, the Plücker relation (65) is rewritten as

$$
\begin{aligned}
0=q^{2} \mid \mathbf{0}^{m+1 /}, & \mathbf{0}^{m}, \ldots, \boldsymbol{N}-\mathbf{2}^{m}, \boldsymbol{N}-\mathbf{1}^{m}\left|\times\left|\mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\right|\right. \\
& -\left|-\mathbf{1}^{m}, \mathbf{0}^{m}, \ldots, \boldsymbol{N}-\mathbf{2}^{m}, \boldsymbol{N}-\mathbf{1}^{m}\right| \times\left|\mathbf{1}^{m+1 \prime}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\right| \\
& +\left|\mathbf{1}^{m+1^{\prime}}, \mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\right| \times\left|\mathbf{0}^{m}, \ldots, \boldsymbol{N}-\mathbf{2}^{m}, \boldsymbol{N}-\mathbf{1}^{m}\right|
\end{aligned}
$$

where we have used

$$
\begin{aligned}
\mid \varphi_{1}, \mathbf{1}^{m+1}, & \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\left|=\left|\begin{array}{ccccc}
1 & G_{v+1}^{m+1} & G_{v+1}^{m} & \cdots & G_{v+N-1}^{m} \\
0 & q^{2} G_{v}^{m+1} & G_{v}^{m} & \cdots & G_{v+N-2}^{m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & q^{2 N} G_{v-N+1}^{m+1} & G_{v-N+2}^{m} & \cdots & G_{v-1}^{m}
\end{array}\right|\right. \\
& =\left|\begin{array}{cccc}
q^{2} G_{v}^{m+1} & G_{v}^{m} & \cdots & G_{v+N-2}^{m} \\
\vdots & \vdots & \ddots & \vdots \\
q^{2 N} G_{v-N+1}^{m+1} & G_{v-N+2}^{m} & \cdots & G_{v-1}^{m}
\end{array}\right| \\
& =q^{2}\left|\mathbf{0}^{m+1}, \mathbf{0}^{m}, \ldots, \boldsymbol{N}-\mathbf{2}^{m}, \boldsymbol{N}-\mathbf{1}^{m}\right| .
\end{aligned}
$$

Then, we obtain by using lemma 3.5 ,

$$
\begin{gather*}
0=q^{2} \times\left(a_{0} c q^{\nu+m-1}\right)^{-2(N-1)} \phi_{N}^{\nu, m+1} \times \phi_{N+1}^{\nu, m}-\phi_{N}^{\nu-1, m} \times\left(a_{0} c q^{\nu+m}\right)^{-2 N} \phi_{N+1}^{\nu+1, m+1} \\
+\left(a_{0} c q^{\nu+m-1}\right)^{-2 N} \phi_{N+1}^{\nu, m+1} \times \phi_{N}^{\nu, m} \tag{67}
\end{gather*}
$$

which is the same as equation (42). This completes the proof of the bilinear equation (42).
3.2.3. Determinant formula for negative N. Proposition 3.3 is a determinant formula for the solutions with $N \in \mathbb{Z} \geqslant 0$, which are obtained by successive application of T_{2} on the seed
solution described in proposition 3.1. In order to obtain solutions for $N \in \mathbb{Z}_{<0}$, we have to apply T_{2}^{-1} on the seed solution; however, we find that this procedure collapses. Therefore, we construct 'seed and higher solutions' for negative N so that bilinear equations described in proposition 3.4 hold for all $N \in \mathbb{Z}_{<0}$. To find the seed solutions for $N=-1$, we put $N=-1$, $\phi_{-1}^{\nu}(c)=\bar{G}_{\nu}(c)$ and $\phi_{0}^{\nu}(c)=1$ in equations (42)-(49); we obtain a set of contiguity relations to be satisfied by $\bar{G}_{\nu}(c)$,

$$
\begin{align*}
& a_{0}^{2} c^{2} q^{2 v} \bar{G}_{v}(q c)+\bar{G}_{v}(c)=q^{2} \bar{G}_{v-1}(c) \tag{68}\\
& \bar{G}_{v}(q c)=\bar{G}_{v+1}(c)+c^{2} \bar{G}_{v+1}(q c) \tag{69}
\end{align*}
$$

Similarly to the case of $N \geqslant 0$, the following three-term relations in the direction of c or v are derived from equations (68) and (69):

$$
\begin{align*}
& \bar{G}_{v}(c)=\left(\frac{1}{q^{2}}-c^{2}\right) \bar{G}_{v}(q c)+a_{0}^{2} q^{2 v} c^{2} \bar{G}_{v}\left(q^{2} c\right) \tag{70}\\
& \bar{G}_{v}(c)=\frac{1}{q^{2}}\left(1+c^{2}\right) \bar{G}_{v+1}(c)-\frac{c^{2}}{q^{4}}\left(1-a_{0}^{2} q^{2 v}\right) \bar{G}_{v+2}(c) \tag{71}
\end{align*}
$$

Then we obtain a determinant formula for $N<0$ as follows.
Theorem 3.6. Let $\bar{G}_{v}(c)$ be a function satisfying equations (68) and (69). For each $-M=$ $N \in \mathbb{Z}_{<0}$, we define an $M \times M$ Toeplitz determinant

$$
\begin{equation*}
\phi_{N}^{v}(c)=\operatorname{det}\left(\bar{G}_{v-i+j}(c)\right)_{i, j=1, \ldots, M} \quad\left(-M=N \in \mathbb{Z}_{<0}\right) . \tag{72}
\end{equation*}
$$

Then, $\phi_{N}^{\nu}(c)$ satisfies the bilinear equations (42)-(49), and therefore equations (39)-(41) satisfy $q P_{I V}(20)-(22)$ with $a_{2}=1$.

Since this theorem is proved by a similar procedure to theorem 3.3, we omit the details.
Remark. If we parametrize as $a_{0}=q^{\mu}$,

$$
\begin{equation*}
\bar{G}_{v}(c ; q)=c^{2} q^{-2 v} G_{-(v-2 \mu)}(c ; 1 / q) \tag{73}
\end{equation*}
$$

satisfies equations (68) and (69) formally.

3.3. q-Okamoto polynomials

In the previous sections we have discussed the particular solutions on the reflection hyperplane of the affine Weyl group $W=W\left(A_{2}^{(1)}\right)$ in the parameter space. It is easy to see that $q \mathrm{P}_{\mathrm{IV}}$ (1) with normalization condition (19) admits a particular solution given by

$$
\begin{equation*}
\left(f_{0}, f_{1}, f_{2} ; a_{0}, a_{1}, a_{2}\right)=\left(x p^{-1}, x p^{-1}, x p^{-1} ; p^{-1}, p^{-1}, p^{-1}\right) \quad x=c^{2 / 3} \quad p=q^{-1 / 3} . \tag{74}
\end{equation*}
$$

Note that this parameter corresponds to the fixed point of π, namely the Dynkin diagram automorphism of the affine Weyl group $W\left(A_{2}^{(1)}\right)$. By applying the Bäcklund transformations on this seed solution, we obtain a series of rational solutions on the barycentres of the Weyl chamber of the affine Weyl group $W\left(A_{2}^{(1)}\right)$.

Theorem 3.7. For the parameters

$$
\begin{equation*}
T_{1}^{m} T_{2}^{n}\left(a_{0}, a_{1}, a_{2}\right)=\left(p^{-3 m-1}, p^{3 m-3 n-1}, p^{3 n-1}\right) \quad m, n \in \mathbb{Z} \tag{75}
\end{equation*}
$$

we have the following rational solutions of the $q P_{I V}$ equation (1):

$$
\begin{align*}
T_{1}^{m} T_{2}^{n}\left(f_{0}\right) & =x p^{m-2 n-1} \frac{Q_{m+1, n}\left(x p^{-2}\right) Q_{m+1, n+1}(x)}{Q_{m+1, n}(x) Q_{m+1, n+1}\left(x p^{-2}\right)} \\
T_{1}^{m} T_{2}^{m}\left(f_{1}\right) & =x p^{m+n-1} \frac{Q_{m+1, n+1}\left(x p^{-2}\right) Q_{m, n}(x)}{Q_{m+1, n+1}(x) Q_{m, n}\left(x p^{-2}\right)} \tag{76}\\
T_{1}^{m} T_{2}^{n}\left(f_{2}\right) & =x p^{n-2 m-1} \frac{Q_{m, n}\left(x p^{-2}\right) Q_{m+1, n}(x)}{Q_{m, n}(x) Q_{m+1, n}\left(x p^{-2}\right)}
\end{align*}
$$

Here $Q_{m, n}(x)$ are monic polynomials defined through the recurrence relations,

$$
\begin{aligned}
& Q_{m-1, n}(x) Q_{m+1, n+1}\left(x p^{-2}\right)=Q_{m, n}(x) Q_{m, n+1}\left(x p^{-2}\right)+x p^{-2 m-2 n} Q_{m, n+1}(x) Q_{m, n}\left(x p^{-2}\right) \\
& Q_{m+1, n}(x) Q_{m, n+1}\left(x p^{-2}\right)=Q_{m+1, n+1}(x) Q_{m, n}\left(x p^{-2}\right)+x p^{4 m-2 n-2} Q_{m, n}(x) Q_{m+1, n+1}\left(x p^{-2}\right) \\
& Q_{m+1, n+1}(x) Q_{m, n-1}\left(x p^{-2}\right)=Q_{m, n}(x) Q_{m+1, n}\left(x p^{-2}\right)+x p^{4 n-2 m-2} Q_{m+1, n}(x) Q_{m, n}\left(x p^{-2}\right)
\end{aligned}
$$

with initial conditions $Q_{0,0}(x)=Q_{1,0}(x)=Q_{1,1}(x)=1$.
We call the polynomials $Q_{m, n}(x)$ the q-Okamoto polynomials. Some examples are as follows.

$$
\begin{aligned}
& Q_{2,0}(x)=x^{2}+\left(p^{2}+1\right) x+1 \\
& Q_{3,0}(x)=x^{6}+x^{5}\left(p^{6}+p^{4}+p^{2}+2+p^{-2}\right) \\
&+x^{4}\left(2 p^{8}+2 p^{6}+3 p^{4}+3 p^{2}+3+p^{-2}+p^{-4}\right) \\
&+x^{3}\left(p^{10}+2 p^{8}+3 p^{6}+4 p^{4}+4 p^{2}+3+2 p^{-2}+p^{-4}\right) \\
&+x^{2}\left(2 p^{8}+2 p^{6}+3 p^{4}+3 p^{2}+3+p^{-2}+p^{-4}\right) \\
&+x\left(p^{6}+p^{4}+p^{2}+2+p^{-2}\right)+1 \\
& Q_{2,1}(x)=x+1 \\
& Q_{3,1}(x)=x^{4}+ x^{3}\left(p^{4}+p^{2}+1+p^{-2}\right)+x^{2}\left(2 p^{4}+p^{2}+2+p^{-2}\right) \\
&+x\left(p^{4}+p^{2}+1+p^{-2}\right)+1 .
\end{aligned}
$$

Similarly to the continuous case, q-Okamoto polynomials admit a determinant formula of Jacobi-Trudi type. The proof of the theorem 3.7 as well as the Jacobi-Trudi type formulae will be given in our next paper [9], where we shall discuss the τ functions in a more general setting.

4. Discussion

4.1. $\tilde{W}\left(A_{2}^{(1)}\right) \times \tilde{W}\left(A_{1}^{(1)}\right)$ symmetry and comparison with Sakai's Mul. 6 system

Along with the transformations s_{i} and π of $\tilde{W}\left(A_{2}^{(1)}\right)$, we define the transformations w_{0}, w_{1} and r acting on $\mathbb{C}\left(a_{i}, f_{i}(i=0,1,2)\right)$ as follows:
$w_{0}\left(f_{0}\right)=\frac{a_{0} a_{1}\left(a_{2} a_{0}+a_{2} f_{0}+f_{2} f_{0}\right)}{f_{2}\left(a_{0} a_{1}+a_{0} f_{1}+f_{0} f_{1}\right)} \quad w_{1}\left(f_{0}\right)=\frac{1+a_{0} f_{0}+a_{0} a_{1} f_{0} f_{1}}{a_{0} a_{1} f_{1}\left(1+a_{2} f_{2}+a_{2} a_{0} f_{2} f_{0}\right)}$
$w_{0}\left(f_{1}\right)=\frac{a_{1} a_{2}\left(a_{0} a_{1}+a_{0} f_{1}+f_{0} f_{1}\right)}{f_{0}\left(a_{1} a_{2}+a_{1} f_{2}+f_{1} f_{2}\right)} \quad w_{1}\left(f_{1}\right)=\frac{1+a_{1} f_{1}+a_{1} a_{2} f_{1} f_{2}}{a_{1} a_{2} f_{2}\left(1+a_{0} f_{0}+a_{0} a_{1} f_{0} f_{1}\right)}$
$w_{0}\left(f_{2}\right)=\frac{a_{2} a_{0}\left(a_{1} a_{2}+a_{1} f_{2}+f_{1} f_{2}\right)}{f_{1}\left(a_{2} a_{0}+a_{2} f_{0}+f_{2} f_{0}\right)} \quad w_{1}\left(f_{2}\right)=\frac{1+a_{2} f_{2}+a_{2} a_{0} f_{2} f_{0}}{a_{2} a_{0} f_{0}\left(1+a_{1} f_{1}+a_{1} a_{2} f_{1} f_{2}\right)}$
$r\left(f_{i}\right)=\frac{1}{f_{i}} \quad w_{0}\left(a_{i}\right)=w_{1}\left(a_{i}\right)=r\left(a_{i}\right)=a_{i} \quad(i=0,1,2)$.

Lemma 4.1. The transformations w_{0}, w_{1} and r generate the extended affine Weyl group $\tilde{W}\left(A_{1}^{(1)}\right)$; namely, we have

$$
\begin{equation*}
w_{0}^{2}=w_{1}^{2}=r^{2}=1 \quad r w_{0}=w_{1} r \tag{78}
\end{equation*}
$$

Moreover, this action of $\tilde{W}\left(A_{1}^{(1)}\right)=\left\langle w_{0}, w_{1}, r\right\rangle$ commutes with that of $\tilde{W}\left(A_{2}^{(1)}\right)=$ $\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle$.

Note that the discrete time evolution of the $q \mathrm{P}_{I V}$ system is a translation of the $\tilde{W}\left(A_{1}^{(1)}\right)$, that is,

$$
\begin{equation*}
t=T_{4}=r w_{0} \tag{79}
\end{equation*}
$$

Lemma 4.2. The representation of $\tilde{W}\left(A_{2}^{(1)}\right) \times \tilde{W}\left(A_{1}^{(1)}\right)$ is equivalent to Sakai's system Mul.6.

Proof. Let x, y, z and $\tilde{a}_{0}, \tilde{a}_{1}, \tilde{a}_{2}, b_{1}, b_{0}=\tilde{a}_{0} \tilde{a}_{1} \tilde{a}_{2} / b_{1}$ be Sakai's homogeneous variables and the parameters [17]. Then his representation of $\tilde{W}\left(A_{2}^{(1)}\right) \times \tilde{W}\left(A_{1}^{(1)}\right)$ is given as follows:
$\pi=\sigma^{4} \quad s_{2}=\pi s_{1} \pi^{2} \quad s_{0}=\pi^{2} s_{1} \pi \quad r=\sigma^{3} \quad w_{0}=r w_{1} r$
where σ, s_{1} and w_{1} are given by ${ }^{4}$

$$
\begin{array}{lcccc}
\sigma\left(\tilde{a}_{0}\right)=\tilde{a}_{1} & \sigma\left(\tilde{a}_{1}\right)=\tilde{a}_{2} & \sigma\left(\tilde{a}_{2}\right)=\tilde{a}_{0} & \sigma\left(b_{0}\right)=b_{1} & \sigma\left(b_{1}\right)=b_{0} \\
\sigma(x)=\tilde{a}_{2} x y(z-x) \quad \sigma(y)=-b_{1} y z(x+y-z) & \sigma(z)=\tilde{a}_{2} x(x-z)^{2} \\
s_{1}\left(\tilde{a}_{0}\right)=\tilde{a}_{0} \tilde{a}_{1} & s_{1}\left(\tilde{a}_{1}\right)=\tilde{a}_{1}^{-1} & s_{1}\left(\tilde{a}_{2}\right)=\tilde{a}_{2} \tilde{a}_{1} & s_{1}\left(b_{i}\right)=b_{i} \quad(i=0,1) \\
s_{1}(x)=x & s_{1}(y)=\tilde{a}_{1} y & s_{1}(z)=\tilde{a}_{1} z & \tag{81}\\
w_{1}\left(\tilde{a}_{i}\right)=\tilde{a}_{i} & (i=0,1,2) & w_{1}\left(b_{0}\right)=b_{0} b_{1}^{2} & w_{1}\left(b_{1}\right)=b_{1}^{-1} \\
w_{1}(x)=x\left(y+\tilde{a}_{2} x\right) & w_{1}(y)=-b_{1} y\left(y+\tilde{a}_{2} x\right) & w_{1}(z)=z\left(\tilde{a}_{2} x-b_{1} y\right) .
\end{array}
$$

Introduce variables $\tilde{f}_{i}(i=0,1,2)$ as

$$
\begin{equation*}
\tilde{f}_{1}=-\frac{x}{z} \quad \tilde{f}_{2}=\tilde{a}_{2} \frac{x-z}{y} \quad \tilde{f}_{0}=\frac{b_{1} y z}{\tilde{a}_{2} x(x-z)} \tag{82}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& \sigma\left(\tilde{f}_{0}\right)=\frac{\tilde{a}_{1}}{\tilde{f}_{1}} \quad \sigma\left(\tilde{f}_{1}\right)=\frac{\tilde{a}_{2}}{\tilde{f}_{2}} \quad \sigma\left(\tilde{f}_{2}\right)=\frac{\tilde{a}_{0}}{\tilde{f}_{0}} \\
& s_{1}\left(\tilde{f}_{0}\right)=\tilde{f}_{0} \frac{\tilde{a}_{1}\left(1+\tilde{f}_{1}\right)}{\tilde{a}_{1}+\tilde{f}_{1}} \quad s_{1}\left(\tilde{f}_{1}\right)=\frac{\tilde{f}_{1}}{\tilde{a}_{1}} \quad s_{1}\left(\tilde{f}_{2}\right)=\frac{\tilde{a}_{1}+\tilde{f}_{2}}{1+\tilde{f}_{1}} \\
& w_{1}\left(\tilde{f}_{0}\right)=\frac{1+\tilde{f}_{0}+\tilde{f}_{0} \tilde{f}_{1}}{\tilde{f}_{1}\left(1+\tilde{f}_{2}+\tilde{f}_{2} \tilde{f}_{0}\right)} \quad w_{1}\left(\tilde{f}_{1}\right)=\frac{1+\tilde{f}_{1}+\tilde{f}_{1} \tilde{f}_{2}}{\tilde{f}_{2}\left(1+\tilde{f}_{0}+\tilde{f}_{0} \tilde{f}_{1}\right)} \tag{83}\\
& w_{1}\left(\tilde{f}_{2}\right)=\frac{1+\tilde{f}_{2}+\tilde{f}_{2} \tilde{f}_{0}}{\tilde{f}_{0}\left(1+\tilde{f}_{1}+\tilde{f}_{1} \tilde{f}_{2}\right)} .
\end{align*}
$$

This representation is equivalent to our representation by the relation $\tilde{f}_{i}=a_{i} f_{i}, \tilde{a}_{i}=$ a_{i}^{2}.

[^1]
4.2. Ultra-discretization of $q P_{I V}$

In section 2.3 , we mentioned that $q \mathrm{P}_{\text {IV }}$ admit a continuous limit to the symmetric form of P_{IV}. There is another interesting limit, which is known as the 'ultra-discrete limit' [18]. We put

$$
f_{i}=\mathrm{e}^{F_{i} / \varepsilon} \quad a_{i}=\mathrm{e}^{A_{i} / \varepsilon} \quad i=0,1,2
$$

and take the limit $\varepsilon \rightarrow+0$. By using the formula

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow+0} \varepsilon \log \left(\mathrm{e}^{\frac{A}{\varepsilon}}+\mathrm{e}^{\frac{B}{\varepsilon}}+\cdots\right)=\max (A, B, \ldots) \tag{84}
\end{equation*}
$$

$q \mathrm{P}_{\mathrm{IV}}$ (1) yields
$\bar{F}_{0}=t\left(F_{0}\right)=A_{0}+A_{1}+F_{1}+\max \left(0, A_{2}+F_{2}, A_{0}+A_{2}+F_{0}+F_{2}\right)$

$$
-\max \left(0, A_{0}+F_{0}, A_{1}+A_{0}+F_{1}+F_{0}\right)
$$

$\bar{F}_{1}=t\left(F_{1}\right)=A_{1}+A_{2}+F_{2}+\max \left(0, A_{0}+F_{0}, A_{1}+A_{0}+F_{1}+F_{0}\right)$

$$
\begin{equation*}
-\max \left(0, A_{1}+F_{1}, A_{2}+A_{1}+F_{2}+F_{1}\right) \tag{85}
\end{equation*}
$$

$\bar{F}_{2}=t\left(F_{2}\right)=A_{2}+A_{0}+F_{0}+\max \left(0, A_{1}+F_{1}, A_{2}+A_{1}+F_{2}+F_{1}\right)$

$$
-\max \left(0, A_{2}+F_{2}, A_{0}+A_{2}+F_{0}+F_{2}\right)
$$

$\bar{A}_{i}=t\left(A_{i}\right)=A_{i}$
which we call the fourth ultra-discrete Painlevé equation($\mathrm{uP}_{\mathrm{IV}}$). Simultaneously, Bäcklund transformation (6) is ultra-discretized as

$$
\begin{align*}
& s_{i}\left(F_{j}\right)=F_{j}+u_{i j}\left(\max \left(A_{i}, F_{i}\right)-\max \left(0, A_{i}+F_{i}\right)\right) \tag{86}\\
& s_{i}\left(A_{j}\right)=A_{j}-a_{i j} A_{i} \quad \pi\left(X_{i}\right)=X_{i+1} \quad(i=0,1,2) \quad X=F, A
\end{align*}
$$

where $A=\left(a_{i j}\right)_{i, j=0,1,2}$ and $U=\left(u_{i j}\right)_{i, j=0,1,2}$ are given by equation (7). Then we can verify the following:
Proposition 4.3. The transformations s_{0}, s_{1}, s_{2} and π of the A-variables and the F-variables, defined by equation (86), generate the extended affine Weyl group $\tilde{W}=\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle$ of type $A_{2}^{(1)}$. Furthermore, they commute with the time evolution t of the fourth ultra-discrete Painlevé equation $u P_{I V}$.

Appendix. Difference formulae and Plücker relations

In this appendix, we provide data which are necessary for the proof of proposition 3.4.
We first note that it is possible to express $\phi_{N}^{\nu, m}$ in section 3.2 as a Casorati determinant with respect to m as follows.

Lemma A.1. $\phi_{N}^{\nu, m}$ is rewritten as

$$
\phi_{N}^{\nu, m}=\left|\begin{array}{cccc}
G_{v}^{m} & G_{v-1}^{m} & \cdots & G_{v-N+1}^{m} \tag{A.1}\\
G_{v}^{m+1} & G_{v-1}^{m+1} & \cdots & G_{v-N+1}^{m+1} \\
\vdots & \vdots & \ddots & \vdots \\
G_{v}^{m+N-1} & G_{v-1}^{m+N-1} & \cdots & G_{\nu-N+1}^{m+N-1}
\end{array}\right|
$$

$\phi_{N}^{\nu, m}=\prod_{k=1}^{N-1}\left(\frac{a_{0}^{2} q^{2(n-k)}}{a_{0}^{2} q^{2(n-k)}-1}\right)^{N-k}\left|\begin{array}{cccc}G_{v}^{m} & G_{v}^{m+1} & \cdots & G_{v}^{m+N-1} \\ G_{v}^{m-1} & G_{v}^{m} & \cdots & G_{v}^{m+N-2} \\ \vdots & \vdots & \ddots & \vdots \\ G_{v}^{m-N+1} & G_{v}^{m-N+2} & \cdots & G_{v}^{m}\end{array}\right|$.

Proof of lemma A.1. We use the contiguity relation (33), which is rewritten with the notation introduced in equation (57) as

$$
\begin{equation*}
G_{v}^{m+1}=G_{v+1}^{m}-q^{2 m} c^{2} G_{v}^{m} . \tag{A.3}
\end{equation*}
$$

For $k=2$ to N, subtracting the $(j-1)$ th column multiplied by $q^{2 m} c^{2}$ from the j th column of equation (58) for $j=N, \ldots, k$, we obtain

$$
\begin{align*}
\phi_{N}^{\nu, m}=\left|\begin{array}{ccccc}
G_{v}^{m} & G_{v v+}^{m}-q^{2 m} c^{2} G_{v}^{m} & \cdots & G_{v+N-1}^{m}-q^{2 m} c^{2} G_{v+N-2}^{m} \\
G_{v-1}^{m} & G_{v}^{m}-q^{2 m} c^{2} G_{v-1}^{m} & \cdots & G_{v-N-2}^{m}-q^{2 m} c^{2} G_{v+N-3}^{m} \\
\vdots & \vdots & & \ddots & \vdots \\
G_{v-N+1}^{m} & G_{v-N+2}^{m}-q^{2 m} c^{2} G_{v-N+1}^{m} & \cdots & G_{v}^{m}-q^{2 m} c^{2} G_{v-1}^{m}
\end{array}\right| \\
\quad=\left|\begin{array}{cccc}
G_{v}^{m} & G_{v}^{m+1} & \cdots & G_{v+N-2}^{m+1} \\
G_{v-1}^{m} & G_{v-1}^{m+1} & \cdots & G_{v+N-3}^{m+1} \\
\vdots & \vdots & \ddots & \vdots \\
G_{v-N+1}^{m} & G_{v-N+1}^{m+1} & \cdots & G_{v-1}^{m+1}
\end{array}\right| \\
\quad=\cdots \\
\quad=\left|\begin{array}{cccc}
G_{v}^{m} & G_{v}^{m+1} & \cdots & G_{v}^{m+N-1} \\
G_{v-1}^{m} & G_{v-1}^{m+1} & \cdots & G_{v-1}^{m+N-1} \\
\vdots & \vdots & \ddots & \vdots \\
G_{v-N+1}^{m} & G_{v-N+1}^{m+1} & \cdots & G_{v-N+1}^{m+N-1}
\end{array}\right| \tag{A.4}
\end{align*}
$$

which yields equation (A.1) by taking the transposition. In order to derive equation (A.2), we use the contiguity relation,

$$
\begin{equation*}
G_{v-1}^{m}+\frac{G_{v}^{m}}{a_{0}^{2} q^{2(v-1)}-1}=\frac{a_{0}^{2} q^{2(v-1)}}{a_{0}^{2} q^{2(v-1)}-1} G_{v}^{m-1} \tag{A.5}
\end{equation*}
$$

which is obtained from equations (32) and (33). For $k=2$ to N, subtracting the ($i-1$)th row multiplied by $\frac{1}{a_{0}^{2} q^{2(\nu-i-1)}-1}$ from the i th row of equation (A.4) for $i=N, \ldots k$, we obtain

$$
\begin{aligned}
& \phi_{N}^{v, m}=\left|\begin{array}{cccc}
G_{v}^{m} & G_{v}^{m+1} & \cdots & G_{v}^{m+N-1} \\
\vdots & \vdots & \ddots & \vdots \\
G_{v-N+2}^{m} & G_{v-N+2}^{m+1} & \cdots & G_{v-N+2}^{m+N-1} \\
G_{v-N+1}^{m}-\frac{G_{v-N+2}^{m+1}}{a_{0}^{2} q^{2(v-N+1)}-1} & G_{v-N+1}^{m+1}-\frac{G_{v}^{m+N+2}}{a_{0}^{2} q^{2(v-N+1)}-1} & \cdots & G_{v-N+1}^{m+N-1}-\frac{G_{v-N+1}^{m+N-1}}{a_{0}^{2} q^{2(v-N+1)}-1}
\end{array}\right| \\
& =\frac{a_{0}^{2} q^{2(\nu-N+1)}}{a_{0}^{2} q^{2(\nu-N+1)}-1}\left|\begin{array}{cccc}
G_{v}^{m} & G_{v}^{m+1} & \cdots & G_{v}^{m+N-1} \\
\vdots & \vdots & \ddots & \vdots \\
G_{v-N+2}^{m} & G_{v-N+2}^{m+1} & \cdots & G_{v-N+2}^{m+N-1} \\
G_{v-N+2}^{m-1} & G_{v-N+2}^{m} & \cdots & G_{v-N+2}^{m+N-2}
\end{array}\right| \\
& =\cdots \\
& =\prod_{i=1}^{N-1} \frac{a_{0}^{2} q^{2(\nu-i)}}{a_{0}^{2} q^{2(\nu-i)}-1}\left|\begin{array}{cccc}
G_{v}^{m} & G_{v}^{m+1} & \cdots & G_{v}^{m+N-1} \\
G_{v}^{m-1} & G_{v}^{m} & \cdots & G_{v}^{m+N-2} \\
\vdots & \vdots & \ddots & \vdots \\
G_{v-N+2}^{m} & G_{v-N+2}^{m+1} & \cdots & G_{v-N-1}^{m+N-2} \\
G_{v-N+2}^{m-1} & G_{v-N+2}^{m} & \cdots & G_{v-N+2}^{m+N-2}
\end{array}\right| \\
& =\cdots
\end{aligned}
$$

$$
=\prod_{i=1}^{N-1}\left(\frac{a_{0}^{2} q^{2(\nu-i)}}{a_{0}^{2} q^{2(\nu-i)}-1}\right)^{N-i}\left|\begin{array}{cccc}
G_{v}^{m} & G_{v}^{m+1} & \cdots & G_{v}^{m+N-1} \\
G_{v}^{m-1} & G_{v}^{m} & \cdots & G_{v}^{m+N-2} \\
\vdots & \vdots & \ddots & \vdots \\
G_{v}^{m-N+2} & G_{v}^{m-N+3} & \cdots & G_{v}^{m-1} \\
G_{v}^{m-N+1} & G_{v}^{m-N} & \cdots & G_{v}^{m}
\end{array}\right|
$$

which is equation (A.2).

In view of this lemma, we introduce the following notations.
$\phi_{N}^{\nu, m}=\left|\begin{array}{cccc}G_{v}^{m} & G_{v+1}^{m} & \cdots & G_{v+N-1}^{m} \\ G_{v-1}^{m} & G_{v}^{m} & \cdots & G_{v-N-2}^{m} \\ \vdots & \vdots & \ddots & \vdots \\ G_{v-N+1}^{m} & G_{v-N+2}^{m} & \cdots & G_{v}^{m}\end{array}\right|=\left|\mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\right|$
$\phi_{N}^{\nu, m}=\left|\begin{array}{cccc}G_{v}^{m} & G_{v-1}^{m} & \cdots & G_{v-N+1}^{m} \\ G_{v}^{m+1} & G_{v-1}^{m+1} & \cdots & G_{v-N+1}^{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ G_{v}^{m+N-1} & G_{v-1}^{m+N-1} & \cdots & G_{v-N+1}^{m+N-1}\end{array}\right|=\left|\underline{\mathbf{0}}^{m}, \underline{-\mathbf{1}^{m}}, \ldots, \underline{-\boldsymbol{N}+\mathbf{1}^{m}}\right|$
$\psi_{N}^{\nu, m}=\left|\begin{array}{cccc}G_{v}^{m} & G_{v}^{m+1} & \cdots & G_{v}^{m+N-1} \\ G_{v}^{m-1} & G_{v}^{m} & \cdots & G_{v}^{m+N-2} \\ \vdots & \vdots & \ddots & \vdots \\ G_{v}^{m-N+1} & G_{v}^{m-N+2} & \cdots & G_{v}^{m}\end{array}\right|=\left|\overline{\mathbf{0}}_{v}, \overline{\mathbf{1}}_{v}, \ldots, \overline{\boldsymbol{N}-\mathbf{2}_{v}}, \overline{\boldsymbol{N}-\mathbf{1}_{v}}\right|$
where $\boldsymbol{k}^{m}, \underline{\boldsymbol{k}}^{m}$ and $\overline{\boldsymbol{k}}_{v}$ are column vectors given by

$$
\boldsymbol{k}^{m}=\left(\begin{array}{c}
G_{v+k}^{m} \tag{A.9}\\
G_{v+k-1}^{m} \\
\vdots \\
G_{v+k-N+1}^{m}
\end{array}\right) \quad \underline{\boldsymbol{k}}^{m}=\left(\begin{array}{c}
G_{v+k}^{m} \\
G_{v+k}^{m+1} \\
\vdots \\
G_{v+k}^{m+N-1}
\end{array}\right) \quad \overline{\boldsymbol{k}}_{v}=\left(\begin{array}{c}
G_{v}^{m+k} \\
G_{v}^{m+k-1} \\
\vdots \\
G_{v}^{m+k-N+1}
\end{array}\right)
$$

respectively. We also use auxiliary column vectors,

$$
\begin{align*}
\boldsymbol{k}^{m \prime} & =\left(\begin{array}{c}
G_{v+k}^{m} \\
q^{2} G_{v+k-1}^{m} \\
\vdots \\
q^{2(N-1)} G_{v+k-N+1}^{m}
\end{array}\right) \quad \underline{\boldsymbol{k}}^{m \dagger}=\left(\begin{array}{c}
G_{v+k}^{m} \\
q^{-2} G_{v+k}^{m+1} \\
\vdots \\
q_{v}^{m+k} \\
q^{-2(N-1)} G_{v+k}^{m+N-1}
\end{array}\right) \tag{A.10}\\
\overline{\boldsymbol{k}}_{v}^{\prime} & =\left(\begin{array}{c}
q^{2} G_{v}^{m+k-1} \\
\vdots \\
q^{2(N-1)} G_{v}^{m+k-N+1}
\end{array}\right)
\end{align*}
$$

Now we give difference formulae.
Difference formula I

$$
\begin{align*}
& \left|\mathbf{0}^{m+1 \prime}, \mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{3}^{m}, \boldsymbol{N}-\mathbf{2}^{m}\right|=\left(a_{0} c q^{m+\nu-1}\right)^{-2(N-1)} \phi_{N}^{\nu, m+1} \\
& \left|\mathbf{1}^{m+1 \prime}, \mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{3}^{m}, \boldsymbol{N}-\mathbf{2}^{m}\right|=\left(a_{0} c q^{m+\nu-1}\right)^{-2(N-1)} \phi_{N}^{\nu, m+1} \tag{A.11}
\end{align*}
$$

Table A.1. Data for the proof of difference formulae.

Difference formula	Contiguity relation	Determinant
Difference formula I (A.11)	$G_{v+1}^{m+1}=G_{v}^{m+1}+a_{0}^{2} q^{2(v+m)} c^{2} G_{v}^{m}$	Equation (A.6)
Difference formula II (A.12)	$G_{v}^{m+1}=G_{v+1}^{m}-q^{2 m} c^{2} G_{v}^{m}$	Equation (A.6)
Difference formula III (A.13)	$G_{v}^{m}-G_{v v-1}^{m}=a_{0}^{2} c^{2} q^{2(v+m-2)} G_{v-1}^{m-1}$	Equation (A.7)
Difference formula IV (A.14)	$G_{v+1}^{m+1}-G_{v+1}^{m}=c^{2} q^{2 m}\left(1-a_{0} q^{2 v}\right) G_{v}^{m}$	Equation (A.8)
Difference formula V (A.15)	$G_{v+1}^{m+1}-a_{0} q^{2 v} G_{v+1}^{m}=\left(1-a_{0} q^{2 v}\right) G_{v}^{m+1}$	Equation (A.8)

Difference formula II

$$
\begin{align*}
& \left|\mathbf{0}^{m}, \mathbf{0}^{m+1}, \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{3}^{m+1}, \boldsymbol{N}-\mathbf{2}^{m+1}\right|=\phi_{N}^{v, m} \tag{A.12}\\
& \left|\mathbf{1}^{m}, \mathbf{0}^{m+1}, \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{3}^{m+1}, \boldsymbol{N}-\mathbf{2}^{m+1}\right|=c^{2} q^{2 m} \phi_{N}^{v, m} .
\end{align*}
$$

Difference formula III

$$
\begin{align*}
\left|-\mathbf{1}^{m-1}, \underline{\mathbf{-}}^{m-1}, \ldots, \underline{\boldsymbol{N}+\mathbf{1}^{m-1}}, \underline{\mathbf{- N}+\mathbf{1}^{m \dagger}}\right|=\left(a_{0} c q^{\nu+m-1}\right)^{-2(N-1)} \phi_{N}^{\nu, m} \tag{A.13}\\
\underline{-\mathbf{-}}^{m-1}, \underline{\mathbf{-}}^{m-1}, \ldots, \underline{\boldsymbol{N}+\mathbf{1}^{m-1}}
\end{align*}
$$

Difference formula IV

$$
\begin{align*}
& \mid \overline{\mathbf{0}}_{v+1}^{\prime}, \overline{\mathbf{0}}_{v}, \ldots,{\overline{\boldsymbol{N}-\mathbf{2}_{v}} \mid=\left(c q^{m-1}\right)^{-2(N-1)}\left(a_{0}^{2} q^{2 v}-1\right)^{-(N-1)} \psi_{N}^{v+1, m}}^{\left|\overline{\mathbf{1}}_{v+1}^{\prime}, \overline{\mathbf{0}}_{v}, \ldots, \overline{\boldsymbol{N}-\mathbf{2}_{v}}\right|=\left(q^{m-1} c\right)^{-2(N-1)}\left(a_{0}^{2} q^{2 v}-1\right)^{-(N-1)} \psi_{N}^{v+1, m}} . \tag{A.14}
\end{align*}
$$

Difference formula V

$$
\begin{align*}
&\left|\overline{\mathbf{0}}_{v+1}, \overline{\mathbf{0}}_{v}, \ldots, \overline{\boldsymbol{N}-\mathbf{2}}_{v}\right|=\left(1-a_{0}^{2} q^{2 v}\right)^{-(N-1)} \psi_{N}^{v+1, m} \\
&\left|\overline{\mathbf{1}}_{v+1}, \overline{\mathbf{0}}_{v}, \ldots,{\overline{\boldsymbol{N}}-\mathbf{2}_{v} \mid}\right|=\left(1-a_{0}^{2} q^{2 v}\right)^{-(N-1)} a_{0}^{2} q^{2 v} \psi_{N}^{v+1, m} . \tag{A.15}
\end{align*}
$$

Difference formula I has been proved in lemma 3.5. Other formulae are proved in a similar manner. Table A. 1 shows the contiguity relation and determinant to be used for the derivation of each difference formula.

Next we give the list of Plücker relations which are necessary for the proof of proposition 3.4.
Plücker relation I

$$
\begin{align*}
0=\mid \varphi_{1}, \mathbf{1}^{m+1 \prime}, & \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\left|\times\left|\mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}, \boldsymbol{N}^{m}\right|\right. \\
& -\left|\varphi_{1}, \mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\right| \times\left|\mathbf{1}^{m+1 \prime}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}, \boldsymbol{N}^{m}\right| \\
& +\left|\mathbf{1}^{m+1 \prime}, \mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\right| \times\left|\varphi_{1}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}, \boldsymbol{N}^{m}\right| . \tag{A.16}
\end{align*}
$$

Plücker relation II

$$
\begin{align*}
0=\mid \varphi_{2}, \mathbf{1}^{m+1 \prime} & , \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\left|\times\left|\mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}, \boldsymbol{N}^{m}\right|\right. \\
& -\left|\varphi_{2}, \mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\right| \times\left|\mathbf{1}^{m+1}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}, \boldsymbol{N}^{m}\right| \\
& +\left|\mathbf{1}^{m+1 \prime}, \mathbf{0}^{m}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}\right| \times\left|\varphi_{2}, \mathbf{1}^{m}, \ldots, \boldsymbol{N}-\mathbf{1}^{m}, \boldsymbol{N}^{m}\right| . \tag{A.17}
\end{align*}
$$

Plücker relation III

$$
\begin{align*}
0=\mid \varphi_{2}, \mathbf{1}^{m}, & \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{1}^{m+1}\left|\times\left|\mathbf{0}^{m+1}, \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{1}^{m+1}, \boldsymbol{N}^{m+1}\right|\right. \\
& -\left|\varphi_{2}, \mathbf{0}^{m+1}, \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{1}^{m+1}\right| \\
& \times\left|\mathbf{1}^{m}, \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{1}^{m+1}, \boldsymbol{N}^{m+1}\right| \\
& +\left|\mathbf{1}^{m}, \mathbf{0}^{m+1}, \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{1}^{m+1}\right| \\
& \times\left|\varphi_{2}, \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{1}^{m+1}, \boldsymbol{N}^{m+1}\right| . \tag{A.18}
\end{align*}
$$

Table A.2. Data for the proof of bilinear equations.

Bilinear equation	Plücker relation	Difference formula
Equation (42)	Plücker relation I (A.16)	Difference formula I (A.11)
Equations (43) and (44)	Plücker relation II (A.17)	Difference formula I (A.11)
	Plücker relation III (A.18)	Difference formula II (A.12)
Equation (45)	Plücker relation IV (A.19)	Difference formula II (A.12)
Equation (46)	Plücker relation V (A.20)	Difference formula I (A.11)
Equation (47)	Plücker relation VI(A.21)	Difference formula III (A.13)
Equation (48)	Plücker relation VII (A.22)	Difference formula IV (A.14)
Equation (49)	Plücker relation VIII(A.23)	Difference formula V (A.15)

Plücker relation IV

$$
\begin{align*}
0=\mid \varphi_{2}, \varphi_{1}, & \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{1}^{m+1}\left|\times\left|\mathbf{1}^{m}, \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{1}^{m+1}, \boldsymbol{N}^{m+1}\right|\right. \\
& -\left|\varphi_{2}, \mathbf{1}^{m}, \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{1}^{m+1}\right| \times\left|\varphi_{1}, \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{1}^{m+1}, \boldsymbol{N}^{m+1}\right| \\
& +\left|\varphi_{1}, \mathbf{1}^{m}, \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{1}^{m+1}\right| \\
& \times\left|\varphi_{2}, \mathbf{1}^{m+1}, \ldots, \boldsymbol{N}-\mathbf{1}^{m+1}, \boldsymbol{N}^{m+1}\right| \tag{A.19}
\end{align*}
$$

Plücker relation V

$$
\begin{align*}
0=\mid \varphi_{2}, \varphi_{1}, & \mathbf{0}^{m}, \ldots, \boldsymbol{N}-\mathbf{2}^{m}\left|\times\left|\mathbf{0}^{m+1 \prime}, \mathbf{0}^{m}, \ldots, \boldsymbol{N}-\mathbf{2}^{m}, \boldsymbol{N}-\mathbf{1}^{m}\right|\right. \\
& -\left|\varphi_{2}, \mathbf{0}^{m+1^{\prime}}, \mathbf{0}^{m}, \ldots, \boldsymbol{N}-\mathbf{2}^{m}\right| \times\left|\varphi_{1}, \mathbf{0}^{m}, \ldots, \boldsymbol{N}-\mathbf{2}^{m}, \boldsymbol{N}-\mathbf{1}^{m}\right| \\
& +\left|\varphi_{1}, \mathbf{0}^{m+1 \prime}, \mathbf{0}^{m}, \ldots, \boldsymbol{N}-\mathbf{2}^{m}\right| \times\left|\varphi_{2}, \mathbf{0}^{m}, \ldots, \boldsymbol{N}-\mathbf{2}^{m}, \boldsymbol{N}-\mathbf{1}^{m}\right| . \tag{A.20}
\end{align*}
$$

Plücker relation VI

$$
\begin{align*}
& 0=\left|\underline{\mathbf{0}}^{m-1}, \underline{\mathbf{1}}^{m-1}, \ldots, \underline{\boldsymbol{N}+\mathbf{1}^{m-1}}, \underline{-\boldsymbol{N}^{m-1}}\right| \\
& \times\left|\underline{-\mathbf{1}^{m-1}}, \ldots, \underline{\mathbf{- N}+\mathbf{1}^{m-1}}, \underline{\mathbf{- N + 1}}{ }^{m+1} \dagger, \varphi_{1}\right| \\
& -\left|\underline{\mathbf{0}}^{m-1}, \underline{\mathbf{- 1}}{ }^{m-1}, \ldots, \underline{\mathbf{- N}+\mathbf{1}^{m-1}}, \underline{\mathbf{- N}+\mathbf{1}^{m \dagger}}\right| \\
& \times\left|\underline{-\mathbf{1}^{m-1}}, \ldots, \underline{\boldsymbol{N}+\mathbf{1}^{m-1}}, \underline{-N}^{m-1}, \varphi_{1}\right| \\
& +\left|\underline{\mathbf{0}}^{m-1}, \underline{\mathbf{- 1}}^{m-1}, \ldots, \underline{\boldsymbol{- N}+\mathbf{1}^{m-1}}, \varphi_{1}\right| \\
& \times\left|\underline{\mathbf{1}}^{m-1}, \ldots, \underline{\boldsymbol{N}+\mathbf{1}^{m-1}}, \underline{-\boldsymbol{N}^{m-1}}, \underline{\boldsymbol{N}+\mathbf{1}^{m}}{ }^{\dagger}\right| . \tag{A.21}
\end{align*}
$$

Plücker relation VII

$0=\left|\varphi_{1}, \overline{\mathbf{1}}_{v+1}^{\prime}, \overline{\mathbf{1}}_{v}, \ldots, \overline{\boldsymbol{N}-\mathbf{1}_{v}}\right| \times\left|\overline{\mathbf{0}}_{v}, \overline{\mathbf{1}}_{v}, \ldots, \overline{\boldsymbol{N}-\mathbf{1}_{v}}, \overline{\mathbf{N}}_{v}\right|$

$$
\begin{align*}
& -\left|\varphi_{1}, \overline{\mathbf{0}}_{v}, \overline{\mathbf{1}}_{v}, \ldots,{\overline{\boldsymbol{N}-\mathbf{1}_{v}}}_{v}\right| \times\left|\overline{\mathbf{1}}_{v+1}^{\prime}, \overline{\mathbf{1}}_{v}, \ldots, \overline{\boldsymbol{N}-\mathbf{1}}_{v}, \overline{\boldsymbol{N}}_{v}\right| \\
& +\left|\overline{\mathbf{1}}_{v+1}^{\prime}, \overline{\mathbf{0}}_{v}, \overline{\mathbf{1}}_{v}, \ldots, \overline{\boldsymbol{N}-\mathbf{1}_{v}}\right| \times\left|\varphi_{1}, \overline{\mathbf{1}}_{v}, \ldots, \overline{\boldsymbol{N}-\mathbf{1}_{v}}, \overline{\boldsymbol{N}}_{v}\right| . \tag{A.22}
\end{align*}
$$

Plücker relation VIII

$0=\left|\varphi_{2}, \varphi_{1}, \overline{\mathbf{1}}_{v}, \ldots, \overline{\boldsymbol{N}-\mathbf{1}_{v}}\right| \times\left|\overline{\mathbf{0}}_{v+1}, \overline{\mathbf{1}}_{v}, \ldots, \overline{\boldsymbol{N}-\mathbf{1}_{v}}, \overline{\boldsymbol{N}}_{v}\right|$

$$
\begin{align*}
& -\left|\varphi_{2}, \overline{\mathbf{0}}_{v+1}, \overline{\mathbf{1}}_{v}, \ldots,{\overline{\boldsymbol{N}-\mathbf{1}_{v}}}_{v}\right| \times\left|\varphi_{1}, \overline{\mathbf{1}}_{v}, \ldots, \overline{\boldsymbol{N}-\mathbf{1}}_{v}, \overline{\boldsymbol{N}}_{v}\right| \\
& +\left|\varphi_{1}, \overline{\mathbf{0}}_{v+1}, \overline{\mathbf{1}}_{v}, \ldots, \overline{\boldsymbol{N}}-\mathbf{1}_{v}\right| \times\left|\varphi_{2}, \overline{\mathbf{1}}_{v}, \ldots, \overline{\boldsymbol{N}-\mathbf{1}_{v}}, \overline{\boldsymbol{N}}_{v}\right| . \tag{A.23}
\end{align*}
$$

Here, $\varphi_{i}(i=1,2)$ are any column vectors which we specialize as

$$
\varphi_{1}=\left(\begin{array}{c}
1 \tag{A.24}\\
0 \\
\vdots \\
0
\end{array}\right) \quad \varphi_{2}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

in the proof of bilinear equations.
In section 3.2.2, we showed how equation (42) can be derived from the Plücker relation I and difference formula I. The other bilinear equations in proposition 3.4 are obtained similarly by using the data described in table A.2.

References

[1] Adler V E 1994 Physica D 73335
[2] Gasper G and Rahman M 1990 Basic hypergeometric series Encyclopedia of Mathematics and its Applications vol 35 (Cambridge: Cambridge University Press)
[3] Grammaticos B, Nijhoff F and Ramani A 1999 The Painlevé Property-One Century Later (CRM Series in Mathematical Physics) ed R Conte (New York: Springer) p 413
[4] Grammaticos B, Ramani A and Papageorgiou V G 1991 Phys. Rev. Lett. 671825
[5] Grammaticos B and Ramani A 1996 Physica A 228160
[6] Jimbo M, Miwa T and Ueno K 1981 Physica D 2306
[7] Jimbo M and Miwa T 1981 Physica D 2407
[8] Jimbo M and Miwa T 1981 Physica D 326
[9] Kajiwara K, Noumi M and Yamada Y 2001 in preparation
[10] Kajiwara K and Ohta Y 1998 J. Phys. A: Math. Gen. 312431
[11] Koekoek R and Swarttouw R F 1998 The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Department of Technical Mathematics and Informatics Report, Delft University of Technology no 98-17
[12] Noumi M and Yamada Y 1998 Commun Math. Phys. 199281
[13] Noumi M and Yamada Y 1998 Funkcial. Ekvac. 41483
[14] Noumi M and Yamada Y 1999 Nagoya Math. J. 15353
[15] Okamoto K 1986 Math. Ann. 275221
[16] Ramani A, Grammaticos B and Hietarinta J 1991 Phys. Rev. Lett. 671829
[17] Sakai H 2001 Commun. Math. Phys. 220165
[18] Tokihiro T, Takahashi D, Matsukidaira J and Satsuma J 1996 Phys. Rev. Lett. 763247
[19] Veselov A P and Shabat A B 1993 Funct. Anal. Appl. 271

[^0]: ${ }^{3}$ The situation is a little delicate for $N<0$, but we shall discuss this in section 2.2.3.

[^1]: ${ }^{4}$ The generators σ, s_{1}, w_{1} here correspond to $\sigma_{(123450)}, w_{1}$ and w_{1}^{\prime} in [17]. An error in the formula for $\sigma_{(123450)}$ [17] is corrected.

