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Abstract
A q-difference analogue of the fourth Painlevé equation is proposed. Its
symmetry structure and some particular solutions are investigated.

PACS numbers: 02.30.Hq, 02.30.Gp, 02.30.Ks

1. Introduction

The importance of six Painlevé equations and their solutions in mathematics and mathematical
physics is widely accepted. The discrete analogue of Painlevé equations was first recognized
in [6–8], where they appear as Schlesinger transformations of the Painlevé equations. After the
discovery of the discrete analogue of the Painlevé property which is now called the singularity
confinement property [4], many second-order difference equations, including q-difference
equations, have been identified as the discrete Painlevé equations [5, 16]. By investigating
the Lax pairs, particular solutions including τ functions and bilinear equations, and so on [3],
it has been gradually recognized that discrete Painlevé equations admit similar properties to
original Painlevé equations.

The purpose of this paper is to introduce a q-difference analogue of the fourth Painlevé
equation PIV. This equation, called the q-Painlevé IV equation qPIV below, shares many
characteristic properties with the original PIV. In particular, it admits the action of the affine
Weyl group of type A

(1)
2 as a group of Bäcklund transformations. Furthermore, it has an

analogue of classical solutions expressible by the continuous q-Hermite–Weber functions and
rational solutions corresponding to those of PIV studied in [10, 13, 15].

The plan of this paper is as follows. We introduce our qPIV in section 2 and describe its
symmetry structure in terms of the affine Weyl group W(A

(1)
2 ). In section 3, we construct a

q-analogue of classical solutions along each reflection hyperplane from a seed solution which
is described by a discrete Riccati equation. Each particular solution of this class is expressed in
terms of a Toeplitz type determinant of continuous q-Hermite–Weber functions. In section 4,
we discuss some related topics including the relationship between our qPIV and Sakai’s Mul.6
system [17] and the ultra-discrete limit of qPIV.
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2. Symmetric form of a q-Painlevé equation qPIV

2.1. q-Painlevé equation qPIV

In this paper, we consider the following discrete system including three dependent variables
f0, f1 and f2 and three parameters a0, a1 and a2:

a0 = a0 a1 = a1 a2 = a2

f0 = a0a1f1
1 + a2f2 + a2a0f2f0

1 + a0f0 + a0a1f0f1

f1 = a1a2f2
1 + a0f0 + a0a1f0f1

1 + a1f1 + a1a2f1f2

f2 = a2a0f0
1 + a1f1 + a1a2f1f2

1 + a2f2 + a2a0f2f0

(1)

where stands for the discrete time evolution. We shall also use the notation t (x) = x when
we regard x → x as a transformation of variables. The inverse transformation of t is given by

a0 = a0 a1 = a1 a2 = a2

f0 = f2

a0a1

a0a1 + a0f1 + f0f1

a2a0 + a2f0 + f2f0

f1 = f0

a1a2

a1a2 + a1f2 + f1f2

a0a1 + a0f1 + f0f1

f2 = f1

a2a0

a2a0 + a2f0 + f2f0

a1a2 + a1f2 + f1f2
.

(2)

We introduce a constant q by setting a0a1a2 = q. Noting that the product f0f1f2 can be
regarded as the independent variable, we introduce a variable c such that f0f1f2 = qc2 and
c = qc. If we regard fj (j = 0, 1, 2) as functions in c, equation (1) thus represents a system
of q-difference equations for the unknown functions fj = fj (c) (j = 0, 1, 2) with parameters
aj (j = 0, 1, 2) such that a0a1a2 = q. As we shall see in section 1.3 below, this q-difference
system has a continuous limit to the symmetric form of the fourth Painlevé equation PIV. For
this reason, we refer to equation (1) as the symmetric form of the fourth q-Painlevé equation
qPIV.

2.2. Bäcklund transformations

The discrete system equation (1) admits the action of the (extended) affine Weyl group
W̃ = 〈s0, s1, s2, π〉 of type A(1)

2 as a group of Bäcklund transformations. In what follows we
denote by W̃ the group generated by the generators s0, s1, s2, π and the fundamental relations

s2
i = 1 (sisi+1)

3 = 1 π3 = 1 πsi = si+1π (i = 0, 1, 2) (3)

where the indices are understood as elements of Z/3Z.
We define the action of s0, s1, s2 and π on the parameters a0, a1 and a2 by the following

formulae:

s0(a0) = a−1
0 s0(a1) = a1a0 s0(a2) = a2a0

s1(a0) = a0a1 s1(a1) = a−1
1 s1(a2) = a2a1

s2(a0) = a0a2 s2(a1) = a1a2 s2(a2) = a−1
2

π(a0) = a1 π(a1) = a2 π(a2) = a0.

(4)
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Note that this definition is a multiplicative version of the standard realization of W̃ on the
simple roots αj defined through aj = qαj (j = 0, 1, 2). We now define the action of s0, s1, s2

and π on the f -variables as follows:

s0(f0) = f0 s0(f1) = f1
a0 + f0

1 + a0f0
s0(f2) = f2

1 + a0f0

a0 + f0

s1(f0) = f0
1 + a1f1

a1 + f1
s1(f1) = f1 s1(f2) = f2

a1 + f1

1 + a1f1

s2(f0) = f0
a2 + f2

1 + a2f2
s2(f1) = f1

1 + a2f2

a2 + f2
s2(f2) = f2

π(f0) = f1 π(f1) = f2 π(f2) = f0.

(5)

We remark that the action of si on the a-variables and the f -variables is given by

si(aj ) = aja
−aij
i si(fj ) = fj

(
ai + fi

1 + aifi

)uij
(i, j = 0, 1, 2) (6)

respectively, where A = (aij )
2
i,j=0 is the generalized Cartan matrix of type A

(1)
2 and

U = (uij )
2
i,j=0 is an orientation matrix of the corresponding Dynkin diagram:

A =
[ 2 −1 −1

−1 2 −1
−1 −1 2

]
U =

[ 0 1 −1
−1 0 1
1 −1 0

]
. (7)

The following theorem can be verified by direct computation.

Theorem 2.1. The transformations s0, s1, s2 and π of the a-variables and the f -variables,
defined by (4) and (5), generate the extended affine Weyl group W̃ = 〈s0, s1, s2, π〉 of type
A
(1)
2 . Furthermore, they commute with the time evolution t of the fourth q-Painlevé equation

qPIV.

By using the action of the extended affine Weyl group W̃ , we can define the Schlesinger
transformations T1, T2 and T3 for qPIV as

T1 = πs2s1 T2 = s1πs2 T3 = s2s1π. (8)

Note that TiTj = TjTi (i, j = 1, 2, 3) and T1T2T3 = 1. The action of T1 on the variables aj
and fj is given explicitly as follows:

T1(a0) = qa0 T1(a1) = q−1a1 T1(a2) = a2

T1(f0) = f1
(a0 + f0)(a0 + f0 + a0a2f2 + a2

0a2f0f2)

(1 + a0f0)(a
2
0a2 + a0a2f0 + f2 + a0f0f2)

T1(f1) = f2
1 + a0f0

a0 + f0

T1(f2) = f0
a2

0a2 + a0a2f0 + f2 + a0f0f2

a0 + f0 + a0a2f2 + a2
0a2f0f2

.

(9)

The corresponding formulae for T2 and T3 are obtained by the rotation of indices, since
T2 = πT1π

−1 and T3 = πT2π
−1. Each of these Schlesinger transformations commutes with

the time evolution of qPIV and can be regarded as a version of the third q-Painlevé equation.
For example, equation (9) is rewritten equivalently as

T1(f1) = f2
1 + a0f0

a0 + f0
= qc2

f0f1

1 + a0f0

a0 + f0

T −1
1 (f0) = f2

a1 + f1

1 + a1f1
= qc2

f0f1

a1 + f1

1 + a1f1
.

(10)
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This is an analogue of the fact that some discrete Painlevé equations arise from Bäcklund
transformations of the Painlevé equations [3, 6–8, 12].

2.3. Limit transition to PIV

By introducing a small parameter ε such that q = e−ε2/2, we set

ai = e−ε2αi/2 fi = −e−εϕi (j = 0, 1, 2). (11)

Then we have

fi − fi = ε2
(
ϕi(ϕi+1 − ϕi+2) + αi

)
+ O(ε3) (12)

for i = 0, 1, 2. Passing to the variables αj and ϕj , we define the derivation ′ by

x ′ = lim
ε→0

1

ε
(x − x) (13)

for a function x in αj and ϕj . Then we have fi − fi = ε2ϕ′
i + O(ε3). Hence we obtain

α′
0 = 0 α′

1 = 0 α′
2 = 0

ϕ′
0 = ϕ0(ϕ1 − ϕ2) + α0

ϕ′
1 = ϕ1(ϕ2 − ϕ0) + α1

ϕ′
2 = ϕ2(ϕ3 − ϕ1) + α2.

(14)

This differential system is the symmetric form the fourth Painlevé equation PIV [1, 14, 19]. In
fact, under the normalization ϕ0 + ϕ1 + ϕ2 = t , α0 + α1 + α2 = 1, the system (14) is equivalent
to the second-order differential equation

y ′′ = 1

2y
(y ′)2 +

3

2
y3 − 2ty2 +

(
t2

2
+ α1 − α2

)
y − α2

0

2y
(15)

for y = ϕ0, where ′ = d/dt . Through the limiting procedure, the Bäcklund transformations
s0, s1, s2 and π for our qPIV also pass to those for the symmetric form of PIV (14) such that

si(αj ) = αj − αiaij si(ϕj ) = ϕj +
αi

ϕi
uij

π(αj ) = αj+1 π(ϕj ) = ϕj+1

(i, j = 0, 1, 2) (16)

as in [13, 14].

3. Particular solutions for qPIV

In this section, we investigate the q-analogue of classical solutions of PIV and determinant
formulae for them. Recall that PIV has two classes of classical solutions [10, 14, 15], those
of hypergeometric type, expressed in terms of Hermite–Weber functions, and the rational
solutions.

3.1. Continuous q-Hermite–Weber functions as seed solutions

In order to show the parameter dependence explicitly, we rewrite qPIV (1) by operating T ν
1 T

N
2

on (1) (ν,N ∈ Z). We denote T ν
1 T

N
2 (fi) = fi(c; ν,N), and we abbreviate the unnecessary

arguments depending on the context. Notice that

T ν
1 T

N
2 (a0) = a0q

ν T ν
1 T

N
2 (a1) = a1q

−ν+N

T ν
1 T

N
2 (a2) = a2q

−N T ν
1 T

N
2 (c) = c

(17)
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and

t (ai) = ai (i = 0, 1, 2) t (c) = qc (18)

where

q = a0a1a2 c =
(
f0f1f2

q

)1/2

. (19)

The q-Painlevé IV equation qPIV with respect to the variable c is expressed as

f0(qc) = a0a1q
Nf1(c)

1 + a2q
−Nf2(c) + a2a0q

ν−Nf2(c)f0(c)

1 + a0qνf0(c) + a0a1qNf0(c)f1(c)
(20)

f1(qc) = a1a2q
−νf2(c)

1 + a0q
νf0(c) + a0a1q

Nf0(c)f1(c)

1 + a1q−ν+Nf1(c) + a1a2q−νf1(c)f2(c)
(21)

f2(qc) = a2a0q
ν−Nf0(c)

1 + a1q
−ν+Nf1(c) + a1a2q

−νf1(c)f2(c)

1 + a2q−Nf2(c) + a2a0qν−Nf2(c)f0(c)
(22)

where the arguments ν and N for fi are suppressed so that fi(c) = fi(c; ν,N). In what
follows, we use similar abbreviations

fi(q
kc) = fi(q

kc; ν,N) fi(ν + k) = fi(c; ν + k,N)

fi(N + k) = fi(c; ν,N + k)
(23)

for k ∈ Z.
First let us consider the case N = 0. It is possible to specialize the variables as

f2 = −1 a2 = 1 (24)

consistently. In fact, equation (22) becomes trivial by this specialization, and equations (20)
and (21) are reduced to a discrete Riccati type equation

f1(qc) = − q

a0qν

(1 − q2c2)f1(c) − a0q
νc2

f1(c)
(25)

and f0(c) = − qc2

f1(c)
. By putting f1(c) = Fν(c)

Gν(c)
in equation (25), we can solve equation (25) as

f1(c) = − q

a0qν

Gν(qc)

Gν(c)
(26)

with Gν(c) satisfying the linear q-difference equation

Gν(q
2c) = (1 − q2c2)Gν(qc) + a2

0q
2νc2Gν(c). (27)

Let us derive contiguity relations to be satisfied by Gν(c) in the direction of ν. For this
purpose, we consider the Schlesinger transformation T1 (9),

f0(ν + 1) = f1(ν)
a0q

ν + f0(ν)

1 + a0qνf0(ν)

a0q
ν + f0(ν) + a0a2q

ν−Nf2(ν) + a2
0a2q

2ν−Nf0(ν)f2(ν)

a2
0a2q2ν−N + a0a2qν−Nf0(ν) + f2(ν) + a0qνf0(ν)f2(ν)

(28)

f1(ν + 1) = f2(ν)
1 + a0q

νf0(ν)

a0qν + f0(ν)
(29)

f2(ν + 1) = f0(ν)
a2

0a2q
2ν−N + a0a2q

ν−Nf0(ν) + f2(ν) + a0q
νf0(ν)f2(ν)

a0qν + f0(ν) + a0a2qν−Nf2(ν) + a2
0a2q2ν−Nf0(ν)f2(ν)

. (30)

Applying the specialization (24) and putting N = 0, equations (28)–(30) are reduced to a
discrete Riccati type equation,

f1(ν + 1) = − f1(ν) − a0q
ν+1c2

a0qνf1(ν) − qc2
. (31)
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Substituting equation (26) into (31), we obtain contiguity relations for Gν(c),

Gν+1(qc) = Gν(qc) + a2
0q

2νc2Gν(c) (32)

Gν+1(c) = Gν(qc) + c2Gν(c). (33)

In particular, we obtain a three-term relation in the direction of ν,

Gν+2(c) = (
c2 + 1

)
Gν+1(c) − c2(1 − a2

0q
2ν)Gν(c). (34)

We note that equations (27) and (34) are derived from equations (32) and (33).
From the above discussion, we have:

Proposition 3.1. qPIV (20)–(22) admits a one-parameter family of particular solutions given
by

f0 = c2a0q
ν Gν(c)

Gν(qc)
f1 = − q

a0qν

Gν(qc)

Gν(c)
f2 = −1 (35)

for N = 0, where Gν(c) is a function satisfying the contiguity relations (32) and (33).

It is interesting to note that equation (27) admits polynomial solutions in c if a0 = q,

G0(c) = 1

G1(c) = c2 + 1

G2(c) = c4 + (1 + q2)c2 + 1

G3(c) = c6 + (1 + q2 + q4)c4 + (1 + q2 + q4)c2 + 1

· · · .
It is not difficult to check that

Gν(c) =
ν∑

k=0

(q2; q2)ν

(q2; q2)k(q2; q2)ν−k

c2ν−2k =
ν∑

k=0

[ν
k

]
q2
c2ν−2k (ν = 0, 1, 2, . . .) (36)

satisfy equations (32) and (33), where
[
ν

k

]
q

is the q-binomial coefficient. The generating
function for these polynomials is given by

1

(cλ; q2)(λ/c; q2)
=

∞∑
ν=0

Gν(c)

(q2; q2)ν

(
λ

c

)ν
. (37)

The polynomials Hν(x) = c−νGν(c), x = c+c−1

2 , are called the continuous q-Hermite
polynomials [2, 11]. In this sense, c−νGν(c) for a0 �= ql (l ∈ Z) may be regarded as a
q-difference analogue of the Hermite–Weber functions, to which hereafter we shall refer as
‘continuous q-Hermite–Weber functions’.

We note that it is possible to obtain ‘higher-order’ solutions for N ∈ Z by successive
applications of T2 on the solutions obtained above3. These solutions are expressed rationally
in the continuous q-Hermite–Weber functions.

From the rotational symmetry π of qPIV, it is possible to apply other specializations,
(a0, f0) = (1,−1), ν = 0, or (a1, f1) = (1,−1), ν − N = 0, on qPIV (20)–(22) and perform
the same procedure as discussed above. Therefore, we obtain:

Theorem 3.2. When ai = qk for some i = 0, 1, 2 and k ∈ Z, the fourth q-Painlevé equation
qPIV (1) admits a one-parameter family of particular solutions which are expressed rationally
by the continuous q-Hermite–Weber functions.

Explicit description of these solutions will be given in the next section.
Note that the hypersurfaces ai = qk (i = 0, 1, 2; k ∈ Z) in the parameter space correspond

to the reflection hyperplanes of the affine Weyl group W = W(A
(1)
2 ). This is an analogue of a

well known result by Okamoto for the classical solutions of the continuous PIV [15].
3 The situation is a little delicate for N < 0, but we shall discuss this in section 2.2.3.
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3.2. Toeplitz determinants

3.2.1. Determinant formula and bilinear equations. In this section, we prove the following
determinant formula for the particular solutions obtained in the previous section.

Theorem 3.3. Let Gν(c) be a solution of equations (32) and (33). For each N ∈ Z�0, we
define an N × N Toeplitz determinant

φν
N(c) = det

(
Gν−i+j (c)

)
i,j=1,...,N (N ∈ Z>0) φν

0 (c) = 1. (38)

Then,

f0(c; ν,N) = a0q
νc2 φν

N+1(c)φ
ν
N(qc)

φν
N+1(qc)φ

ν
N(c)

(39)

f1(c; ν,N) = − 1

a0qν+N−1

φν
N+1(qc)φ

ν−1
N (c)

φν
N+1(c)φ

ν−1
N (qc)

(40)

f2(c; ν,N) = −qN
φν−1
N (qc)φν

N(c)

φν
N(qc)φ

ν−1
N (c)

(41)

satisfy qPIV (20)–(22) with a2 = 1.

We note that the case of N = 0 agrees with proposition 3.1.
Theorem 3.3 is a direct consequence of the following proposition:

Proposition 3.4. φν
N(c) satisfies the following bilinear difference equations:

a2
0c

2q2νφν
N(qc)φ

ν
N+1(c) + φν

N(c)φ
ν
N+1(qc) = q−2Nφν+1

N+1(qc)φ
ν−1
N (c) (42)

a2
0q

2νφν
N(qc)φ

ν+1
N+1(c) − φν

N(c)φ
ν+1
N+1(qc) = (a2

0q
2ν − q2N)φν

N+1(qc)φ
ν+1
N (c) (43)

φν+1
N+1(qc)φ

ν
N(c) − q2Nφν+1

N+1(c)φ
ν
N(qc) = c2

(
a2

0q
2ν − q2N

)
φν
N+1(c)φ

ν+1
N (qc) (44)

φν+1
N (qc)φν

N(c) − φν+1
N (c)φν

N(qc) = −φν
N−1(qc)φ

ν+1
N+1(c) (45)

φν+1
N (qc)φν

N(c) − q2Nφν+1
N (c)φν

N(qc) = 1

a2
0q

2νc2
φν+1
N+1(qc)φ

ν
N−1(c) (46)

q2Nφν
N(c)φ

ν
N+1(c) − φν+1

N+1(c)φ
ν−1
N (c) = −a2

0c
2q2(ν−1)φν

N+1(q
−1c)φν

N(qc) (47)

φν
N(c)φ

ν+1
N+1(c) + c2(a2

0q
2ν − q2N)φν

N+1(c)φ
ν+1
N (c) = q−2Nφν

N(q
−1c)φν+1

N+1(qc) (48)

a2
0q

2νφν
N(c)φ

ν+1
N (c) + φν+1

N+1φ
ν
N−1(c) = a2

0q
2νφν+1

N (q−1c)φν
N(qc). (49)

Proof of theorem 3.3. We show that fi(c) (i = 0, 1, 2) defined by equations (39)–(41) satisfy
equation (20). Substituting equations (39)–(41) into the numerator of the right-hand side of
equation (20), we have

1 + q−Nf2(c) + a0q
ν−Nf2(c)f0(c) = 1 + q−Nf2(c)

(
1 + a2

0q
2νc2 φν

N+1(c)φ
ν
N(qc)

φν
N+1(qc)φ

ν
N(c)

)

= 1 + q−Nf2(c)
φν
N+1(qc)φ

ν
N(c) + a2

0q
2νc2φν

N+1(c)φ
ν
N(qc)

φν
N+1(qc)φ

ν
N(c)

= 1 + q−Nf2(c) q
−2N φ

ν+1
N+1(qc)φ

ν−1
N (c)

φν
N+1(qc)φ

ν
N(c)

= 1 − q−2N φ
ν−1
N (qc)φν+1

N+1(qc)

φν
N(qc)φ

ν
N+1(qc)

= φν
N(qc)φ

ν
N+1(qc) − q−2Nφν−1

N (qc)φν+1
N+1(qc)

φν
N(qc)φ

ν
N+1(qc)

= − a2
0c

2q2(ν−N) φ
ν
N+1(c)φ

ν
N(q

2c)

φν
N(qc)φ

ν
N+1(qc)
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where we used bilinear equations (42) and (47). The denominator is calculated by using
equations (43) and (48) as

1 + a0q
νf0(c) + qN+1f0(c)f1(c) = q−2Nφν−1

N (c)φν
N+1(q

2c)

φν
N+1(qc)φ

ν−1
N (qc)

. (50)

Then, the right-hand side of equation (20) reduces to

qN+1f1(c)
1 + q−Nf2(c) + a0q

ν−Nf2(c)f0(c)

1 + a0qνf0(c) + qN+1f0(c)f1(c)

= qN+1 1

a0qν+N−1

φν
N+1(qc)φ

ν−1
N (c)

φν
N+1(c)φ

ν−1
N (qc)

×a2
0c

2q2(ν−N) φ
ν
N+1(c)φ

ν
N(q

2c)

φν
N(qc)φ

ν
N+1(qc)

q2N φ
ν
N+1(qc)φ

ν−1
N (qc)

φν−1
N (c)φν

N+1(q
2c)

= a0c
2qν+2 φν

N+1(qc)φ
ν
N(q

2c)

φν
N+1(q

2c)φν
N(qc)

= f0(qc).

Thus we have shown that equation (20) follows. Equation (21) is checked by using the bilinear
equations (43), (47), (45) and (49). Equation (22) follows automatically. �
Remark. It should be noted that both 1 +aifi and 1 +fi/ai (i = 0, 1, 2) admit a multiplicative
formula with respect to φ. In fact, we have

1 + a0q
νf0(c; ν,N) = q−2N φ

ν+1
N+1(qc)φ

ν−1
N (c)

φν
N+1(qc)φ

ν
N(c)

(51)

1 + a1q
−ν+Nf1(c; ν,N) = a2

0q
2(ν−1) − q2N

a2
0q

2(ν−1)

φν−1
N+1(qc)φ

ν
N(c)

φν
N+1(c)φ

ν−1
N (qc)

(52)

1 + a2q
−Nf2(c; ν,N) = −φν−1

N−1(qc)φ
ν
N+1(c)

φν−1
N (c)φν

N(qc)
(53)

and

1 +
f0(c; ν,N)

a0qν
= φν−1

N (qc)φν+1
N+1(c)

φν
N+1(qc)φ

ν
N(c)

(54)

1 +
f1(c; ν,N)

a1q−ν+N
= q−2Nc2(q2N − a2

0q
2(ν−1))

φν−1
N+1(c)φ

ν
N(qc)

φν
N+1(c)φ

ν−1
N (qc)

(55)

1 +
f2(c; ν,N)

a2q−N
= 1

a2
0c

2q2(ν−1)

φν
N+1(qc)φ

ν−1
N−1(c)

φν
N(qc)φ

ν−1
N (c)

(56)

which can be verified directly by using equations (39)–(41) and the bilinear equations (42)–
(46).

3.2.2. Proof of proposition 3.4. Our basic idea for proving proposition 3.4 is as follows.
Bilinear difference equations are derived from the Plücker relations, which are quadratic
identities among determinants whose columns are shifted. Therefore, we first construct such
‘difference formulae’ that relate ‘shifted determinants’ and φν

N(c), by using the contiguity
relations of Gν(c). We then derive bilinear difference equations with the aid of difference
formulae from proper Plücker relations. We take equation (42) as an example to show this
procedure explicitly. (For other equations, see the appendix.)

Let us introduce notations,



Fourth q-Painlevé equation 8571

Gν(q
mc) = Gm

ν φν
N(q

mc) = φ
ν,m
N (57)

φ
ν,m
N =

∣∣∣∣∣∣∣∣
Gm

ν Gm
ν+1 · · · Gm

ν+N−1
Gm

ν−1 Gm
ν · · · Gm

ν−N−2
...

...
. . .

...

Gm
ν−N+1 Gm

ν−N+2 · · · Gm
ν

∣∣∣∣∣∣∣∣
= ∣∣0m, 1m, . . . ,N − 1m

∣∣ (58)

where km denotes a column vector,

km =




Gm
ν+k

Gm
ν+k−1
...

Gm
ν+k−N+1


 . (59)

Here the height of the column isN , but we use the same symbol for determinants with different
size, since there is no possibility of confusion.

We next construct a difference formula.

Lemma 3.5 (Difference formula I).

|0m+1′, 0m, 1m, . . . , N − 3m,N − 2m| = (a0cq
m+ν−1)−2(N−1) φ

ν,m+1
N (60)

|1m+1′, 0m, 1m, . . . ,N − 3m,N − 2m| = (a0cq
m+ν−1)−2(N−1) φ

ν,m+1
N (61)

where km′ is a column vector,

km′ =




Gm
ν+k

q2Gm
ν+k−1
...

q2(N−1)Gm
ν+k−N+1


 . (62)

Proof of lemma 3.5. We use the contiguity relation (32), which is rewritten as

Gm+1
ν+1 = Gm+1

ν + a2
0q

2(ν+m)c2Gm
ν . (63)

in the present notation. Then we have

φ
ν,m+1
N =

∣∣∣∣∣∣∣∣∣

Gm+1
ν Gm+1

ν+1 · · · Gm+1
ν+N−1

Gm+1
ν−1 Gm+1

ν · · · Gm+1
ν−N−2

...
...

. . .
...

Gm+1
ν−N+1 Gm+1

ν−N+2 · · · Gm+1
ν

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

Gm+1
ν Gm+1

ν+1 − Gm+1
ν · · · Gm+1

ν+N−1 − Gm+1
ν+N−2

Gm+1
ν−1 Gm+1

ν − Gm+1
ν−1 · · · Gm+1

ν+N−2 − Gm+1
ν+N−3

...
...

. . .
...

Gm+1
ν−N+1 Gm+1

ν−N+2 − Gm+1
ν−N+1 · · · Gm+1

ν − Gm+1
ν−1

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

Gm+1
ν a2

0c
2q2(ν+m)Gm

ν · · · a2
0q

2(ν+N−2+m)c2Gm
ν+N−2

Gm+1
ν−1 a2

0c
2q2(ν−1+m)Gm

ν−1 · · · a2
0q

2(ν+N−3+m)c2Gm
ν+N−3

...
...

. . .
...

Gm+1
ν−N+1 a2

0c
2q2(ν−N+1+m)Gm+1

ν−N+1 · · · a2
0q

2(ν−1+m)c2Gm
ν−1

∣∣∣∣∣∣∣∣∣

= (a0cq
ν+m−1)2(N−1)

∣∣∣∣∣∣∣∣∣

Gm+1
ν Gm

ν · · · Gm
ν+N−2

q2Gm+1
ν−1 Gm

ν−1 · · · Gm
ν+N−3

...
...

. . .
...

q2(N−1)Gm
ν−N+1 Gm

ν−N+1 · · · Gm
ν−1

∣∣∣∣∣∣∣∣∣
= (a0cq

ν+m−1)2(N−1) |0m+1′, 0m, 1m, . . . , N − 3m, N − 2m|
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which is equation (60). In the second line of the above calculation, adding the second column
to the first column, we obtain

φ
ν,m+1
N =

∣∣∣∣∣∣∣∣∣

Gm+1
ν+1 Gm+1

ν+1 − Gm+1
ν · · · Gm+1

ν+N−1 − Gm+1
ν+N−2

Gm+1
ν Gm+1

ν − Gm+1
ν−1 · · · Gm+1

ν−N−2 − Gm+1
ν+N−3

...
...

. . .
...

Gm+1
ν−N+2 Gm+1

ν−N+2 − Gm+1
ν−N+1 · · · Gm+1

ν − Gm+1
ν−1

∣∣∣∣∣∣∣∣∣
(64)

from which we obtain equation (61) by using equation (63). �

We then consider the Plücker relation,

0 = ∣∣ϕ1, 1m+1′, 1m, . . . ,N − 1m
∣∣ × ∣∣0m, 1m, . . . ,N − 1m, Nm

∣∣
− ∣∣ϕ1, 0m, 1m, . . . ,N − 1m

∣∣ × ∣∣1m+1′, 1m, . . . ,N − 1m, Nm
∣∣

+
∣∣1m+1′, 0m, 1m, . . . ,N − 1m

∣∣ × ∣∣ϕ1, 1m, . . . ,N − 1m, Nm
∣∣ (65)

where

ϕ1 =




1
0
...

0


 . (66)

By expansion with respect to the column ϕ1, the Plücker relation (65) is rewritten as

0 = q2
∣∣0m+1′, 0m, . . . ,N − 2m, N − 1m

∣∣ × ∣∣0m, 1m, . . . ,N − 1m
∣∣

−∣∣ − 1m, 0m, . . . ,N − 2m, N − 1m
∣∣ × ∣∣1m+1′, 1m, . . . ,N − 1m

∣∣
+
∣∣1m+1′, 0m, 1m, . . . ,N − 1m

∣∣ × ∣∣0m, . . . ,N − 2m,N − 1m
∣∣

where we have used

∣∣ϕ1, 1m+1′, 1m, . . . ,N − 1m
∣∣ =

∣∣∣∣∣∣∣∣
1 Gm+1

ν+1 Gm
ν+1 · · · Gm

ν+N−1
0 q2Gm+1

ν Gm
ν · · · Gm

ν+N−2
...

...
...

. . .
...

0 q2NGm+1
ν−N+1 Gm

ν−N+2 · · · Gm
ν−1

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
q2Gm+1

ν Gm
ν · · · Gm

ν+N−2
...

...
. . .

...

q2NGm+1
ν−N+1 Gm

ν−N+2 · · · Gm
ν−1

∣∣∣∣∣∣∣
= q2

∣∣0m+1′, 0m, . . . ,N − 2m, N − 1m
∣∣.

Then, we obtain by using lemma 3.5,

0 = q2 × (a0cq
ν+m−1)−2(N−1)φ

ν,m+1
N × φ

ν,m
N+1 − φ

ν−1,m
N × (a0cq

ν+m)−2Nφ
ν+1,m+1
N+1

+(a0cq
ν+m−1)−2N φ

ν,m+1
N+1 × φ

ν,m
N (67)

which is the same as equation (42). This completes the proof of the bilinear equation (42).

3.2.3. Determinant formula for negative N . Proposition 3.3 is a determinant formula for
the solutions with N ∈ Z�0, which are obtained by successive application of T2 on the seed
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solution described in proposition 3.1. In order to obtain solutions for N ∈ Z<0, we have to
apply T −1

2 on the seed solution; however, we find that this procedure collapses. Therefore,
we construct ‘seed and higher solutions’ for negative N so that bilinear equations described in
proposition 3.4 hold for all N ∈ Z<0. To find the seed solutions for N = −1, we put N = −1,
φν

−1(c) = Gν(c) and φν
0 (c) = 1 in equations (42)–(49); we obtain a set of contiguity relations

to be satisfied by Gν(c),

a2
0c

2q2νGν(qc) + Gν(c) = q2Gν−1(c) (68)

Gν(qc) = Gν+1(c) + c2Gν+1(qc). (69)

Similarly to the case of N � 0, the following three-term relations in the direction of c or ν are
derived from equations (68) and (69):

Gν(c) =
(

1

q2
− c2

)
Gν(qc) + a2

0q
2νc2Gν(q

2c) (70)

Gν(c) = 1

q2

(
1 + c2

)
Gν+1(c) − c2

q4

(
1 − a2

0q
2ν

)
Gν+2(c). (71)

Then we obtain a determinant formula for N < 0 as follows.

Theorem 3.6. Let Gν(c) be a function satisfying equations (68) and (69). For each −M =
N ∈ Z<0, we define an M × M Toeplitz determinant

φν
N(c) = det

(
Gν−i+j (c)

)
i,j=1,...,M (−M = N ∈ Z<0). (72)

Then,φν
N(c) satisfies the bilinear equations (42)–(49), and therefore equations (39)–(41) satisfy

qPIV (20)–(22) with a2 = 1.

Since this theorem is proved by a similar procedure to theorem 3.3, we omit the details.

Remark. If we parametrize as a0 = qµ,

Gν(c; q) = c2q−2νG−(ν−2µ)(c; 1/q) (73)

satisfies equations (68) and (69) formally.

3.3. q-Okamoto polynomials

In the previous sections we have discussed the particular solutions on the reflection hyperplane
of the affine Weyl group W = W(A

(1)
2 ) in the parameter space. It is easy to see that qPIV (1)

with normalization condition (19) admits a particular solution given by

(f0, f1, f2; a0, a1, a2) = (xp−1, xp−1, xp−1;p−1, p−1, p−1) x = c2/3 p = q−1/3.

(74)

Note that this parameter corresponds to the fixed point of π , namely the Dynkin diagram
automorphism of the affine Weyl group W(A

(1)
2 ). By applying the Bäcklund transformations

on this seed solution, we obtain a series of rational solutions on the barycentres of the Weyl
chamber of the affine Weyl group W(A

(1)
2 ).

Theorem 3.7. For the parameters

T m
1 T n

2 (a0, a1, a2) = (p−3m−1, p3m−3n−1, p3n−1) m, n ∈ Z (75)
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we have the following rational solutions of the qPIV equation (1):

T m
1 T n

2 (f0) = xpm−2n−1Qm+1,n(xp
−2)Qm+1,n+1(x)

Qm+1,n(x)Qm+1,n+1(xp−2)

T m
1 T m

2 (f1) = xpm+n−1Qm+1,n+1(xp
−2)Qm,n(x)

Qm+1,n+1(x)Qm,n(xp−2)

T m
1 T n

2 (f2) = xpn−2m−1Qm,n(xp
−2)Qm+1,n(x)

Qm,n(x)Qm+1,n(xp−2)
.

(76)

Here Qm,n(x) are monic polynomials defined through the recurrence relations,

Qm−1,n(x)Qm+1,n+1(xp
−2) = Qm,n(x)Qm,n+1(xp

−2) + xp−2m−2nQm,n+1(x)Qm,n(xp
−2)

Qm+1,n(x)Qm,n+1(xp
−2) = Qm+1,n+1(x)Qm,n(xp

−2) + xp4m−2n−2Qm,n(x)Qm+1,n+1(xp
−2)

Qm+1,n+1(x)Qm,n−1(xp
−2) = Qm,n(x)Qm+1,n(xp

−2) + xp4n−2m−2Qm+1,n(x)Qm,n(xp
−2)

with initial conditions Q0,0(x) = Q1,0(x) = Q1,1(x) = 1.

We call the polynomials Qm,n(x) the q-Okamoto polynomials. Some examples are as follows.

Q2,0(x) = x2 + (p2 + 1)x + 1

Q3,0(x) = x6 + x5(p6 + p4 + p2 + 2 + p−2)

+x4(2p8 + 2p6 + 3p4 + 3p2 + 3 + p−2 + p−4)

+x3(p10 + 2p8 + 3p6 + 4p4 + 4p2 + 3 + 2p−2 + p−4)

+x2(2p8 + 2p6 + 3p4 + 3p2 + 3 + p−2 + p−4)

+x(p6 + p4 + p2 + 2 + p−2) + 1

Q2,1(x) = x + 1

Q3,1(x) = x4 + x3(p4 + p2 + 1 + p−2) + x2(2p4 + p2 + 2 + p−2)

+x(p4 + p2 + 1 + p−2) + 1.

Similarly to the continuous case, q-Okamoto polynomials admit a determinant formula of
Jacobi–Trudi type. The proof of the theorem 3.7 as well as the Jacobi–Trudi type formulae
will be given in our next paper [9], where we shall discuss the τ functions in a more general
setting.

4. Discussion

4.1. W̃ (A
(1)
2 ) × W̃ (A

(1)
1 ) symmetry and comparison with Sakai’s Mul.6 system

Along with the transformations si and π of W̃ (A
(1)
2 ), we define the transformations w0, w1

and r acting on C(ai, fi (i = 0, 1, 2)) as follows:

w0(f0) = a0a1(a2a0 + a2f0 + f2f0)

f2(a0a1 + a0f1 + f0f1)
w1(f0) = 1 + a0f0 + a0a1f0f1

a0a1f1(1 + a2f2 + a2a0f2f0)

w0(f1) = a1a2(a0a1 + a0f1 + f0f1)

f0(a1a2 + a1f2 + f1f2)
w1(f1) = 1 + a1f1 + a1a2f1f2

a1a2f2(1 + a0f0 + a0a1f0f1)

w0(f2) = a2a0(a1a2 + a1f2 + f1f2)

f1(a2a0 + a2f0 + f2f0)
w1(f2) = 1 + a2f2 + a2a0f2f0

a2a0f0(1 + a1f1 + a1a2f1f2)

r(fi) = 1

fi
w0(ai) = w1(ai) = r(ai) = ai (i = 0, 1, 2).

(77)
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Lemma 4.1. The transformations w0, w1 and r generate the extended affine Weyl group
W̃ (A

(1)
1 ); namely, we have

w2
0 = w2

1 = r2 = 1 rw0 = w1r. (78)

Moreover, this action of W̃ (A
(1)
1 ) = 〈w0, w1, r〉 commutes with that of W̃ (A

(1)
2 ) =

〈s0, s1, s2, π〉.

Note that the discrete time evolution of the qPIV system is a translation of the W̃ (A
(1)
1 ),

that is,

t = T4 = rw0. (79)

Lemma 4.2. The representation of W̃ (A
(1)
2 )× W̃ (A

(1)
1 ) is equivalent to Sakai’s system Mul.6.

Proof. Let x, y, z and ã0, ã1, ã2, b1, b0 = ã0ã1ã2/b1 be Sakai’s homogeneous variables and
the parameters [17]. Then his representation of W̃ (A

(1)
2 ) × W̃ (A

(1)
1 ) is given as follows:

π = σ 4 s2 = πs1π
2 s0 = π2s1π r = σ 3 w0 = rw1r (80)

where σ , s1 and w1 are given by4

σ(ã0) = ã1 σ(ã1) = ã2 σ(ã2) = ã0 σ(b0) = b1 σ(b1) = b0

σ(x) = ã2xy(z − x) σ (y) = −b1yz(x + y − z) σ (z) = ã2x(x − z)2

s1(ã0) = ã0ã1 s1(ã1) = ã−1
1 s1(ã2) = ã2ã1 s1(bi) = bi (i = 0, 1)

s1(x) = x s1(y) = ã1y s1(z) = ã1z

w1(ãi) = ãi (i = 0, 1, 2) w1(b0) = b0b
2
1 w1(b1) = b−1

1

w1(x) = x(y + ã2x) w1(y) = −b1y(y + ã2x) w1(z) = z(ã2x − b1y).

(81)

Introduce variables f̃i (i = 0, 1, 2) as

f̃1 = −x

z
f̃2 = ã2

x − z

y
f̃0 = b1yz

ã2x(x − z)
. (82)

Then we have

σ(f̃0) = ã1

f̃1

σ(f̃1) = ã2

f̃2

σ(f̃2) = ã0

f̃0

s1(f̃0) = f̃0
ã1(1 + f̃1)

ã1 + f̃1

s1(f̃1) = f̃1

ã1
s1(f̃2) = ã1 + f̃2

1 + f̃1

w1(f̃0) = 1 + f̃0 + f̃0f̃1

f̃1(1 + f̃2 + f̃2f̃0)
w1(f̃1) = 1 + f̃1 + f̃1f̃2

f̃2(1 + f̃0 + f̃0f̃1)

w1(f̃2) = 1 + f̃2 + f̃2f̃0

f̃0(1 + f̃1 + f̃1f̃2)
.

(83)

This representation is equivalent to our representation by the relation f̃i = aifi, ãi =
a2
i . �

4 The generators σ, s1, w1 here correspond to σ(123450), w1 and w′
1 in [17]. An error in the formula for σ(123450) [17]

is corrected.
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4.2. Ultra-discretization of qPIV

In section 2.3, we mentioned that qPIV admit a continuous limit to the symmetric form of PIV.
There is another interesting limit, which is known as the ‘ultra-discrete limit’ [18]. We put

fi = eFi/ε ai = eAi/ε i = 0, 1, 2

and take the limit ε → +0. By using the formula

lim
ε→+0

ε log
(
e

A
ε + e

B
ε + · · · ) = max(A,B, . . .) (84)

qPIV (1) yields

F 0 = t (F0) = A0 + A1 + F1 + max (0, A2 + F2, A0 + A2 + F0 + F2)

− max (0, A0 + F0, A1 + A0 + F1 + F0)

F 1 = t (F1) = A1 + A2 + F2 + max (0, A0 + F0, A1 + A0 + F1 + F0)

− max(0, A1 + F1, A2 + A1 + F2 + F1)

F 2 = t (F2) = A2 + A0 + F0 + max (0, A1 + F1, A2 + A1 + F2 + F1)

− max (0, A2 + F2, A0 + A2 + F0 + F2)

Ai = t (Ai) = Ai

(85)

which we call the fourth ultra-discrete Painlevé equation(uPIV). Simultaneously, Bäcklund
transformation (6) is ultra-discretized as

si(Fj ) = Fj + uij (max(Ai, Fi) − max(0, Ai + Fi))

si(Aj ) = Aj − aijAi π(Xi) = Xi+1 (i = 0, 1, 2) X = F,A
(86)

where A = (aij )i,j=0,1,2 and U = (uij )i,j=0,1,2 are given by equation (7). Then we can verify
the following:

Proposition 4.3. The transformations s0, s1, s2 and π of the A-variables and the F -variables,
defined by equation (86), generate the extended affine Weyl group W̃ = 〈s0, s1, s2, π〉 of type
A
(1)
2 . Furthermore, they commute with the time evolution t of the fourth ultra-discrete Painlevé

equation uPIV.

Appendix. Difference formulae and Plücker relations

In this appendix, we provide data which are necessary for the proof of proposition 3.4.
We first note that it is possible to express φν,m

N in section 3.2 as a Casorati determinant
with respect to m as follows.

Lemma A.1. φν,m
N is rewritten as

φ
ν,m
N =

∣∣∣∣∣∣∣∣∣

Gm
ν Gm

ν−1 · · · Gm
ν−N+1

Gm+1
ν Gm+1

ν−1 · · · Gm+1
ν−N+1

...
...

. . .
...

Gm+N−1
ν Gm+N−1

ν−1 · · · Gm+N−1
ν−N+1

∣∣∣∣∣∣∣∣∣
(A.1)

φ
ν,m
N =

N−1∏
k=1

(
a2

0q
2(n−k)

a2
0q

2(n−k) − 1

)N−k

∣∣∣∣∣∣∣∣
Gm

ν Gm+1
ν · · · Gm+N−1

ν

Gm−1
ν Gm

ν · · · Gm+N−2
ν

...
...

. . .
...

Gm−N+1
ν Gm−N+2

ν · · · Gm
ν

∣∣∣∣∣∣∣∣
. (A.2)
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Proof of lemma A.1. We use the contiguity relation (33), which is rewritten with the notation
introduced in equation (57) as

Gm+1
ν = Gm

ν+1 − q2mc2Gm
ν . (A.3)

For k = 2 to N , subtracting the (j − 1)th column multiplied by q2mc2 from the j th column of
equation (58) for j = N, . . . , k, we obtain

φ
ν,m
N =

∣∣∣∣∣∣∣∣
Gm

ν Gm
ν+1 − q2mc2Gm

ν · · · Gm
ν+N−1 − q2mc2Gm

ν+N−2
Gm

ν−1 Gm
ν − q2mc2Gm

ν−1 · · · Gm
ν−N−2 − q2mc2Gm

ν+N−3
...

...
. . .

...

Gm
ν−N+1 Gm

ν−N+2 − q2mc2Gm
ν−N+1 · · · Gm

ν − q2mc2Gm
ν−1

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

Gm
ν Gm+1

ν · · · Gm+1
ν+N−2

Gm
ν−1 Gm+1

ν−1 · · · Gm+1
ν+N−3

...
...

. . .
...

Gm
ν−N+1 Gm+1

ν−N+1 · · · Gm+1
ν−1

∣∣∣∣∣∣∣∣∣
= · · ·

=

∣∣∣∣∣∣∣∣
Gm

ν Gm+1
ν · · · Gm+N−1

ν

Gm
ν−1 Gm+1

ν−1 · · · Gm+N−1
ν−1

...
...

. . .
...

Gm
ν−N+1 Gm+1

ν−N+1 · · · Gm+N−1
ν−N+1

∣∣∣∣∣∣∣∣
(A.4)

which yields equation (A.1) by taking the transposition. In order to derive equation (A.2), we
use the contiguity relation,

Gm
ν−1 +

Gm
ν

a2
0q

2(ν−1) − 1
= a2

0q
2(ν−1)

a2
0q

2(ν−1) − 1
Gm−1

ν (A.5)

which is obtained from equations (32) and (33). For k = 2 to N , subtracting the (i − 1)th row
multiplied by 1

a2
0q

2(ν−i−1)−1
from the ith row of equation (A.4) for i = N, . . . k, we obtain

φ
ν,m
N =

∣∣∣∣∣∣∣∣∣

Gm
ν Gm+1

ν · · · Gm+N−1
ν

...
...

. . .
...

Gm
ν−N+2 Gm+1

ν−N+2 · · · Gm+N−1
ν−N+2

Gm
ν−N+1 − Gm

ν−N+2

a2
0q

2(ν−N+1)−1
Gm+1

ν−N+1 − Gm+1
ν−N+2

a2
0q

2(ν−N+1)−1
· · · Gm+N−1

ν−N+1 − Gm+N−1
ν−N+2

a2
0q

2(ν−N+1)−1

∣∣∣∣∣∣∣∣∣

= a2
0q

2(ν−N+1)

a2
0q

2(ν−N+1) − 1

∣∣∣∣∣∣∣∣

Gm
ν Gm+1

ν · · · Gm+N−1
ν

...
...

. . .
...

Gm
ν−N+2 Gm+1

ν−N+2 · · · Gm+N−1
ν−N+2

Gm−1
ν−N+2 Gm

ν−N+2 · · · Gm+N−2
ν−N+2

∣∣∣∣∣∣∣∣
= · · ·

=
N−1∏
i=1

a2
0q

2(ν−i)

a2
0q

2(ν−i) − 1

∣∣∣∣∣∣∣∣∣∣

Gm
ν Gm+1

ν · · · Gm+N−1
ν

Gm−1
ν Gm

ν · · · Gm+N−2
ν

...
...

. . .
...

Gm
ν−N+2 Gm+1

ν−N+2 · · · Gm+N−1
ν−N+2

Gm−1
ν−N+2 Gm

ν−N+2 · · · Gm+N−2
ν−N+2

∣∣∣∣∣∣∣∣∣∣
= · · ·
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=
N−1∏
i=1

(
a2

0q
2(ν−i)

a2
0q

2(ν−i) − 1

)N−i

∣∣∣∣∣∣∣∣∣∣

Gm
ν Gm+1

ν · · · Gm+N−1
ν

Gm−1
ν Gm

ν · · · Gm+N−2
ν

...
...

. . .
...

Gm−N+2
ν Gm−N+3

ν · · · Gm−1
ν

Gm−N+1
ν Gm−N

ν · · · Gm
ν

∣∣∣∣∣∣∣∣∣∣
which is equation (A.2). �

In view of this lemma, we introduce the following notations.

φ
ν,m
N =

∣∣∣∣∣∣∣∣
Gm

ν Gm
ν+1 · · · Gm

ν+N−1
Gm

ν−1 Gm
ν · · · Gm

ν−N−2
...

...
. . .

...

Gm
ν−N+1 Gm

ν−N+2 · · · Gm
ν

∣∣∣∣∣∣∣∣
= ∣∣0m, 1m, . . . ,N − 1m

∣∣ (A.6)

φ
ν,m
N =

∣∣∣∣∣∣∣∣∣

Gm
ν Gm

ν−1 · · · Gm
ν−N+1

Gm+1
ν Gm+1

ν−1 · · · Gm+1
ν−N+1

...
...

. . .
...

Gm+N−1
ν Gm+N−1

ν−1 · · · Gm+N−1
ν−N+1

∣∣∣∣∣∣∣∣∣
= |0m, −1m, . . . ,−N + 1m| (A.7)

ψ
ν,m
N =

∣∣∣∣∣∣∣∣
Gm

ν Gm+1
ν · · · Gm+N−1

ν

Gm−1
ν Gm

ν · · · Gm+N−2
ν

...
...

. . .
...

Gm−N+1
ν Gm−N+2

ν · · · Gm
ν

∣∣∣∣∣∣∣∣
= |0ν, 1ν, . . . ,N − 2ν, N − 1ν | (A.8)

where km, km and kν are column vectors given by

km =




Gm
ν+k

Gm
ν+k−1
...

Gm
ν+k−N+1


 km =




Gm
ν+k

Gm+1
ν+k
...

Gm+N−1
ν+k


 kν =




Gm+k
ν

Gm+k−1
ν

...

Gm+k−N+1
ν


 (A.9)

respectively. We also use auxiliary column vectors,

km′ =




Gm
ν+k

q2Gm
ν+k−1
...

q2(N−1)Gm
ν+k−N+1


 km† =




Gm
ν+k

q−2Gm+1
ν+k

...

q−2(N−1)Gm+N−1
ν+k




k
′
ν =




Gm+k
ν

q2Gm+k−1
ν

...

q2(N−1)Gm+k−N+1
ν


 .

(A.10)

Now we give difference formulae.

Difference formula I

|0m+1′, 0m, 1m, . . . , N − 3m, N − 2m| = (a0cq
m+ν−1)−2(N−1) φ

ν,m+1
N

|1m+1′, 0m, 1m, . . . , N − 3m, N − 2m| = (a0cq
m+ν−1)−2(N−1) φ

ν,m+1
N .

(A.11)
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Table A.1. Data for the proof of difference formulae.

Difference formula Contiguity relation Determinant

Difference formula I (A.11) Gm+1
ν+1 = Gm+1

ν + a2
0q

2(ν+m)c2Gm
ν Equation (A.6)

Difference formula II (A.12) Gm+1
ν = Gm

ν+1 − q2mc2Gm
ν Equation (A.6)

Difference formula III (A.13) Gm
ν − Gm

ν−1 = a2
0c

2q2(ν+m−2)Gm−1
ν−1 Equation (A.7)

Difference formula IV (A.14) Gm+1
ν+1 − Gm

ν+1 = c2q2m(1 − a0q
2ν)Gm

ν Equation (A.8)
Difference formula V (A.15) Gm+1

ν+1 − a0q
2νGm

ν+1 = (1 − a0q
2ν)Gm+1

ν Equation (A.8)

Difference formula II

|0m, 0m+1, 1m+1, . . . , N − 3m+1, N − 2m+1| = φ
ν,m
N

|1m, 0m+1, 1m+1, . . . , N − 3m+1, N − 2m+1| = c2q2m φ
ν,m
N .

(A.12)

Difference formula III

|−1m−1, −2m−1, . . . ,−N + 1m−1, −N + 1m†| = (a0cq
ν+m−1)−2(N−1) φ

ν,m
N

|−1m−1, −2m−1, . . . ,−N + 1m−1, −N + 2m†| = (a0cq
ν+m−1)−2(N−1) φ

ν,m
N .

(A.13)

Difference formula IV

|0′
ν+1, 0ν, . . . ,N − 2ν | = (cqm−1)−2(N−1)(a2

0q
2ν − 1)−(N−1) ψ

ν+1,m
N

|1′
ν+1, 0ν, . . . ,N − 2ν | = (qm−1c)−2(N−1)(a2

0q
2ν − 1)−(N−1) ψ

ν+1,m
N .

(A.14)

Difference formula V

|0ν+1, 0ν, . . . ,N − 2ν | = (1 − a2
0q

2ν)−(N−1) ψ
ν+1,m
N

|1ν+1, 0ν, . . . ,N − 2ν | = (1 − a2
0q

2ν)−(N−1)a2
0q

2ν ψ
ν+1,m
N .

(A.15)

Difference formula I has been proved in lemma 3.5. Other formulae are proved in a similar
manner. Table A.1 shows the contiguity relation and determinant to be used for the derivation
of each difference formula.

Next we give the list of Plücker relations which are necessary for the proof of
proposition 3.4.
Plücker relation I

0 = ∣∣ϕ1, 1m+1′, 1m, . . . ,N − 1m
∣∣ × ∣∣0m, 1m, . . . ,N − 1m, Nm

∣∣
−∣∣ϕ1, 0m, 1m, . . . ,N − 1m

∣∣ × ∣∣1m+1′, 1m, . . . ,N − 1m, Nm
∣∣

+
∣∣1m+1′, 0m, 1m, . . . ,N − 1m

∣∣ × ∣∣ϕ1, 1m, . . . ,N − 1m, Nm
∣∣. (A.16)

Plücker relation II

0 = ∣∣ϕ2, 1m+1′, 1m, . . . ,N − 1m
∣∣ × ∣∣0m, 1m, . . . ,N − 1m, Nm

∣∣
−∣∣ϕ2, 0m, 1m, . . . ,N − 1m

∣∣ × ∣∣1m+1′, 1m, . . . ,N − 1m, Nm
∣∣

+
∣∣1m+1′, 0m, 1m, . . . ,N − 1m

∣∣ × ∣∣ϕ2, 1m, . . . ,N − 1m, Nm
∣∣. (A.17)

Plücker relation III

0 = ∣∣ϕ2, 1m, 1m+1, . . . ,N − 1m+1
∣∣ × ∣∣0m+1, 1m+1, . . . ,N − 1m+1, Nm+1

∣∣
−∣∣ϕ2, 0m+1, 1m+1, . . . ,N − 1m+1

∣∣
×∣∣1m, 1m+1, . . . ,N − 1m+1, Nm+1

∣∣
+
∣∣1m, 0m+1, 1m+1, . . . ,N − 1m+1

∣∣
×∣∣ϕ2, 1m+1, . . . ,N − 1m+1, Nm+1

∣∣. (A.18)
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Table A.2. Data for the proof of bilinear equations.

Bilinear equation Plücker relation Difference formula

Equation (42) Plücker relation I (A.16) Difference formula I (A.11)

Equations (43) and (44) Plücker relation II (A.17) Difference formula I (A.11)
Plücker relation III (A.18) Difference formula II (A.12)

Equation (45) Plücker relation IV (A.19) Difference formula II (A.12)
Equation (46) Plücker relation V (A.20) Difference formula I (A.11)
Equation (47) Plücker relation VI(A.21) Difference formula III (A.13)
Equation (48) Plücker relation VII (A.22) Difference formula IV (A.14)
Equation (49) Plücker relation VIII(A.23) Difference formula V (A.15)

Plücker relation IV

0 = ∣∣ϕ2, ϕ1, 1m+1, . . . ,N − 1m+1
∣∣ × ∣∣1m, 1m+1, . . . ,N − 1m+1, Nm+1

∣∣
−∣∣ϕ2, 1m, 1m+1, . . . ,N − 1m+1

∣∣ × ∣∣ϕ1, 1m+1, . . . ,N − 1m+1, Nm+1
∣∣

+
∣∣ϕ1, 1m, 1m+1, . . . ,N − 1m+1

∣∣
×∣∣ϕ2, 1m+1, . . . ,N − 1m+1, Nm+1

∣∣. (A.19)

Plücker relation V

0 = ∣∣ϕ2, ϕ1, 0m, . . . ,N − 2m
∣∣ × ∣∣0m+1′, 0m, . . . ,N − 2m, N − 1m

∣∣
−∣∣ϕ2, 0m+1′, 0m, . . . ,N − 2m

∣∣ × ∣∣ϕ1, 0m, . . . ,N − 2m, N − 1m
∣∣

+
∣∣ϕ1, 0m+1′, 0m, . . . ,N − 2m

∣∣ × ∣∣ϕ2, 0m, . . . ,N − 2m, N − 1m
∣∣. (A.20)

Plücker relation VI

0 = |0m−1, −1m−1, . . . ,−N + 1m−1, −Nm−1|
×|−1m−1, . . . ,−N + 1m−1, −N + 1m+1†, ϕ1|
−|0m−1, −1m−1, . . . ,−N + 1m−1, −N + 1m†|
×|−1m−1, . . . ,−N + 1m−1, −Nm−1, ϕ1|
+|0m−1, −1m−1, . . . ,−N + 1m−1, ϕ1|
×|−1m−1, . . . ,−N + 1m−1, −Nm−1, −N + 1m†|. (A.21)

Plücker relation VII

0 = ∣∣ϕ1, 1
′
ν+1, 1ν, . . . ,N − 1ν

∣∣ × ∣∣0ν, 1ν, . . . ,N − 1ν, N ν

∣∣
−∣∣ϕ1, 0ν, 1ν, . . . ,N − 1ν

∣∣ × ∣∣1′
ν+1, 1ν, . . . ,N − 1ν, N ν

∣∣
+
∣∣1′

ν+1, 0ν, 1ν, . . . ,N − 1ν
∣∣ × ∣∣ϕ1, 1ν, . . . ,N − 1ν, N ν

∣∣. (A.22)

Plücker relation VIII

0 = |ϕ2, ϕ1, 1ν, . . . ,N − 1ν | × |0ν+1, 1ν, . . . ,N − 1ν, N ν |
−|ϕ2, 0ν+1, 1ν, . . . ,N − 1ν | × |ϕ1, 1ν, . . . ,N − 1ν,N ν |
+|ϕ1, 0ν+1, 1ν, . . . ,N − 1ν | × |ϕ2, 1ν, . . . ,N − 1ν,N ν |. (A.23)

Here, ϕi (i = 1, 2) are any column vectors which we specialize as

ϕ1 =




1
0
...

0


 ϕ2 =




0
...

0
1


 (A.24)
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in the proof of bilinear equations.
In section 3.2.2, we showed how equation (42) can be derived from the Plücker relation I

and difference formula I. The other bilinear equations in proposition 3.4 are obtained similarly
by using the data described in table A.2.
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